数学物理学报(英文版) ›› 2013, Vol. 33 ›› Issue (6): 1598-1614.doi: 10.1016/S0252-9602(13)60108-3

• 论文 • 上一篇    下一篇

A SOLUTION OF A GENERAL EQUILIBRIUM PROBLEM

H.R. SAHEBI*|A. RAZANI   

  1. Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Mathematics, Faculty of Science, I. Kh. International University (IKIU), P.O. Box 34149-16818, Qazvin, Iran
  • 收稿日期:2012-05-31 修回日期:2012-10-24 出版日期:2013-11-20 发布日期:2013-11-20
  • 通讯作者: H.R. SAHEBI,sahebi@mail.aiau.ac.ir E-mail:sahebi@mail.aiau.ac.ir;razani@ipm.ir

A SOLUTION OF A GENERAL EQUILIBRIUM PROBLEM

H.R. SAHEBI*|A. RAZANI   

  1. Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Mathematics, Faculty of Science, I. Kh. International University (IKIU), P.O. Box 34149-16818, Qazvin, Iran
  • Received:2012-05-31 Revised:2012-10-24 Online:2013-11-20 Published:2013-11-20
  • Contact: H.R. SAHEBI,sahebi@mail.aiau.ac.ir E-mail:sahebi@mail.aiau.ac.ir;razani@ipm.ir

摘要:

Under the framework of a real Hilbert space, we introduce a new iterative method for finding a common element of the set of solution of a general equilibrium problem and the set of fixed points of a nonexpansive semigroup. Moreover, a numerical example is presented. This example grantee the main result of the paper.

关键词: nonexpansive semigroup, general equilibrium problems, strongly positive linear bounded operator,  α-inverse strongly monotone mapping, fixed point, Hilbert space

Abstract:

Under the framework of a real Hilbert space, we introduce a new iterative method for finding a common element of the set of solution of a general equilibrium problem and the set of fixed points of a nonexpansive semigroup. Moreover, a numerical example is presented. This example grantee the main result of the paper.

Key words: nonexpansive semigroup, general equilibrium problems, strongly positive linear bounded operator,  α-inverse strongly monotone mapping, fixed point, Hilbert space

中图分类号: 

  • 47H09