数学物理学报(英文版) ›› 2013, Vol. 33 ›› Issue (5): 1463-1470.doi: 10.1016/S0252-9602(13)60096-X

• 论文 • 上一篇    下一篇

MULTIPLICATION OPERATORS ON INVARIANT SUBSPACES OF FUNCTION SPACES

B. YOUSEFI|Sh. KHOSHDEL|Y. JAHANSHAHI   

  1. Department of Mathematics, Payame Noor University P. O. Box, 19395-3697, Tehran, Iran
  • 收稿日期:2011-03-10 修回日期:2012-11-12 出版日期:2013-09-20 发布日期:2013-09-20

MULTIPLICATION OPERATORS ON INVARIANT SUBSPACES OF FUNCTION SPACES

B. YOUSEFI|Sh. KHOSHDEL|Y. JAHANSHAHI   

  1. Department of Mathematics, Payame Noor University P. O. Box, 19395-3697, Tehran, Iran
  • Received:2011-03-10 Revised:2012-11-12 Online:2013-09-20 Published:2013-09-20

摘要:

Let Mφ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz, we derive some spectral properties of the multiplication operator Mφ : F →F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n ∈ {1, 2, …, +1}.

关键词: invariant subspace, Hilbert space of analytic functions, essential spectrum, essential norm, Fredholm operator, multiplication operator

Abstract:

Let Mφ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz, we derive some spectral properties of the multiplication operator Mφ : F →F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n ∈ {1, 2, …, +1}.

Key words: invariant subspace, Hilbert space of analytic functions, essential spectrum, essential norm, Fredholm operator, multiplication operator

中图分类号: 

  • 47B38