[1] Chen Z, Dai S.Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity. SIAM J Numer Anal, 2001, 38: 1961-1985 [2] Chen Z, Hoffmann K. Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity. Adv Math Sci Appl, 1995, 5: 363-389 [3] Chen Z, Hoffmann K, Liang J. On a non-stationary Ginzburg-Landau superconductivity model. Math Method Appl Sci, 1993, 16: 855-875 [4] Du Q. Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity. Appl Anal, 1994, 53: 1-17 [5] Du Q. Finite element methods for the time-dependent Ginzburg-Landau model of superconductivity. Comput Math Appl, 1994, 27: 119-133 [6] Ganesh M, Thompson T. A spectrally accurate algorithm and analysis for a Ginzburg-Landau model on superconducting surfaces. Multiscale Model Sim, 2018, 16: 78-105 [7] Gao H, Ju L, Xie W. A stabilized semi-implicit Euler gauge-invariant method for the time-dependent Ginzburg-Landau equations. J Sci Comput, 2019, 80: 1083-1115 [8] Gao H, Li B, Sun W. Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity. SIAM J Numer Anal, 2014, 52: 1183-1202 [9] Gao H, Sun W. An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity. J Comput Phys, 2015, 294: 329-345 [10] Gao H, Sun W. A new mixed formulation and efficient numerical solution of Ginzburg-Landau equations under the temporal gauge. SIAM J Sci Comput, 2016, 38: A1339-A1357 [11] Gao H, Sun W. Analysis of linearized Galerkin-mixed FEMs for the time-dependent Ginzburg-Landau equations of superconductivity. Adv Comput Math, 2018, 44: 923-949 [12] Gor'kov L, Éliashberg G. Generalization of the Ginburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Sov J Exp Theo Phys, 1968, 27: 328-334 [13] Huang F, Shen J. A new class of implicit-explicit BDF$k$ SAV schemes for general dissipative systems and their error analysis. Comput Meth Appl Mech Engrg, 2022, 392: 114718 [14] Huang F, Shen J, Yang Z. A highly efficient and accurate new scalar auxiliary variable approach for gradient flows. SIAM J Sci Comput, 2020, 42: A2514-A2536 [15] Hecht F. New development in FreeFem++. J Numer Math, 2012, 20: 251-266 [16] Heywood J, Rannacher R. Finite-element approximation of the nonstationary Navier-Stokes problem. part IV: Error analysis for second-order time discretization. SIAM J Numer Anal, 1990, 27: 353-384 [17] Jiang M, Zhang Z, Zhao J. Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation. J Comput Phys, 2022, 456: 110954 [18] Ju L, Li X, Qiao Z.Generalized SAV-exponential integrator Schemes for Allen-Cahn type gradient flows. SIAM J Numer Anal, 2022, 60(4): 1905-1931 [19] Ju L, Li X, Qiao Z. Stabilized exponential-SAV schemes preserving energy dissipation law and maximum bound principle for the Allen-Cahn type equations. J Sci Comput, 2022, 92: Art 66 [20] Li B, Wang K, Zhang Z. A Hodge decomposition method for dynamic Ginzburg-Landau equations in nonsmooth domains-a second approach. Commun Comput Phys, 2020, 28: 768-802 [21] Li B, Zhang Z. Mathematical and numerical analysis of the time-dependent Ginzburg-Landau equations in nonconvex polygons based on Hodge decomposition. Math Comput, 2017, 86: 1579-1608 [22] Li B, Zhang Z. A new approach for numerical simulation of the time-dependent Ginzburg-Landau equations. J Comput Phys, 2015, 303: 238-250 [23] Liu F, Mondello M, Goldenfeld N. Kinetics of the superconducting transition. Phys Rev Lett, 1991, 66: 3071-3074 [24] Mu M, Huang Y. An alternating Crank-Nicolson method for decoupling the Ginzburg-Landau equations. SIAM J Numer Anal, 1998, 35: 1740-1761 [25] Nochetto R, Pyo J. Optimal relaxation parameter for the Uzawa method. Numer Math, 2004, 98: 695-702 [26] Shen J, Xu J, Yang J. The scalar auxiliary variable (SAV) approach for gradient flows. J Comput Phys, 2018, 353: 407-416 [27] Shen J, Xu J, Yang J. A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev, 2019, 61: 474-506 [28] Shen J, Zhang X X. Discrete maximum principle of a high order finite difference scheme for a generalized Allen-Cahn equation. Commun Math Sci, 2022, 20: 1409-1436 [29] Tan Z, Tang H. A general class of linear unconditionally energy stable schemes for the gradient flows. J Comput Phys, 2022, 464: 111372 [30] Tang T, Qiao Z.Efficient numerical methods for phase-field equations (in Chinese). Sci Sin Math, 2020, 50: 1-20 [31] Wang Y, Si Z. A convex splitting method for the time-dependent Ginzburg-Landau equation. Numer Algor, 2023. https://doi.org/10.1007/s11075-023-01672-0 [32] Wu C, Sun W. Analysis of Galerkin FEMs for mixed formulation of time-dependent Ginzburg-Landau equations under temporal gauge. SIAM J Numer Anal, 2018, 56: 1291-1312 [33] Zhang Y, Shen J. A generalized SAV approach with relaxation for dissipative systems. J Comput Phys, 2022, 464: 111311 |