[1] Albi G, Bellomo N, Fermo L, et al.Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives. Math Models Methods Appl Sci, 2019, 29(10): 1901-2005 [2] Carrillo J A, Fornasier M, Toscani G, Vecil F. Particle, kinetic,hydrodynamic models of swarming//Naldi G, Pareschi L, Toscani G. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Boston: Birkhauser, 2010: 297-336 [3] Cartabia M R. Cucker-Smale model with time delay. Discrete Contin Dyn Syst, 2022, 42(5): 2409-2432 [4] Choi S H, Ha S Y. Emergence of flocking for a multi-agent system moving with constant speed. Commun Math Sci, 2016, 14(4): 953-972 [5] Choi Y P, Ha S Y, Li Z. Emergent dynamics of the Cucker-Smale flocking model and its variants//Bellomo N, Degond P, Tadmor E. Active Particles, Volume 1: Theory, Models, Applications. Boston: Birkhauser, 2017: 299-331 [6] Choi Y P, Haskovec J. Cucker-Smale model with normalized communication weights and time delay. Kinet Relat Models, 2017, 10(4): 1011-1033 [7] Cucker F, Smale S. Emergent behavior in flocks. IEEE Trans Automat Control, 2007, 52(5): 852-862 [8] Dong J G, Ha S Y, Kim D. Emergence of mono-cluster flocking in the thermomechanical Cucker-Smale model under switching topologies. Anal Appl, 2021, 19(2): 305-342 [9] Ha S Y, Jeong E, Kang M J. Emergent behaviour of a generalized Viscek-type flocking model. Nonlinearity, 2010, 23(12): 3139-3156 [10] Ha S Y, Kim J, Ruggeri K. Emergent behaviors of thermodynamic Cucker-Smale particles. SIAM J Math Anal, 2018, 50(3): 3092-3121 [11] Ha S Y, Kim J, Ruggeri T. From the relativistic mixture of gases to the relativistic Cucker-Smale flocking. Arch Rational Mech Anal, 2020, 235: 1661-1706 [12] Ha S Y, Kim J, Ruggeri T.Kinetic and hydrodynamic models for the relativistic Cucker-Smale ensemble and emergent behaviors. Commun Math Sci, 2021, 19(7): 1945-1990 [13] Ha S Y, Lee K, Levy D. Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system. Commun Math Sci, 2009, 7(2): 453-469 [14] Ha S Y, Liu J G. A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun Math Sci, 2009, 7(2): 297-325 [15] Ha S Y, Ruggeri T. Emergent dynamics of a thermodynamically consistent particle model. Arch Rational Mech Anal, 2017, 223: 1397-1425 [16] Haskovec J. A simple proof of asymptotic consensus in the Hegselmann-Krause and Cucker-Smale models with normalization and delay. SIAM J Appl Dyn Syst, 2021, 20(1): 130-148 [17] Haskovec J. Cucker-Smale model with finite speed of information propagation: well-posedness, flocking and mean-field limit. Kinet Relat Models, 2023, 16(3): 394-422 [18] Jin C. Flocking of the Motsch-Tadmor model with a cut-off interaction function. J Stat Phys, 2018, 171(2): 345-360 [19] Liu Z, Guo L. Synchronization of multi-agent systems without connectivity assumptions. Automatica, 2009, 45(12): 2744-2753 [20] Liu Z, Han J, Hu X. The number of leaders needed for consensus//Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with2009 28th Chinese Control Conference, IEEE, 2009: 3745-3750 [21] Motsch S, Tadmor E. A new model for self-organized dynamics and its flocking behavior. J Stat Phys, 2011, 144(5): 923-947 [22] Motsch S, Tadmor E. Heterophilious dynamics enhances consensus. SIAM Rev, 2014, 56(4): 577-621 [23] Pikovsky A, Rosenblum M, Kurths J.Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge: Cambridge University Press, 2001 [24] Tang G, Guo L. Convergence of a class of multi-agent systems in probabilistic framework. J Syst Sci Complex, 2007, 20(2): 173-197 |