[1] Bellis C, Cakoni F, Guzina B B. Nature of the transmission eigenvalue spectrum for elastic bodies. IMA J Appl Math, 2013, 78: 895-923 [2] Bondarenko O, Harris I, Kleefeld A. The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary. Appl Anal, 2017, 96: 2-22 [3] Bonnet-Ben Dhia A S, Chesnel L, Haddar H. On the use of T-coercivity to study the interior transmission eigenvalue problem. C R Math Acad Sci Paris, 2011, 349: 647-651 [4] Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer, 2011 [5] Cakoni F, Colton D.A Qualitative Approach to Inverse Scattering Theory. Berlin: Springer, 2014 [6] Cakoni F, Colton D, Haddar H. The linear sampling method for anisotropic media. J Comput Appl Math, 2002, 146: 285-299 [7] Cakoni F, Colton D, Haddar H. The computation of lower bounds for the norm of the index of refraction in an anisotropic media from far field data. J Integral Equations Appl, 2009, 21: 203-227 [8] Cakoni F, Colton D, Haddar H.Inverse Scattering Theory and Transmission Eigenvalues. Philadelphia, PA: SIAM, 2016 [9] Cakoni F, Colton D, Haddar H. The interior transmission problem for regions with cavities. SIAM J Math Anal, 2010, 42: 145-162 [10] Cakoni F, Colton D, Haddar H. The interior transmission eigenvalue problem for absorbing media. Inverse Problems, 2012, 28: 045005 [11] Cakoni F, Colton D, Monk P. The determination of the surface conductivity of a partially coated dielectric. SIAM J Appl Math, 2005, 65: 767-789 [12] Cakoni F, Cossonniére A, Haddar H. Transmission eigenvalues for inhomogeneous media containing obstacles. Inverse Probl Imag, 2012, 6: 373-398 [13] Cakoni F, Gintides D, Haddar H. The existence of an infinite discrete set of transmission eigenvalues. SIAM J Math Anal, 2010, 42: 237-255 [14] Cakoni F, Haddar H. Interior transmission problem for anisotropic media//Cohen G C, Joly P, Heikkola E, Neittaanmaki P. Mathematical and Numerical Aspects of Wave Propagation. Berlin: Springer, 2003: 613-618 [15] Cakoni F, Haddar H. On the existence of transmission eigenvalues in an inhomogeneous medium. Appl Anal, 2009, 88: 475-493 [16] Cakoni F, Haddar H.Transmission eigenvalues in inverse scattering theory//Uhlmann G. Inverse Problems and Applications: Inside Out II. Cambridge: Cambridge Univ Press, 2012: 527-578 [17] Cakoni F, Kirsch A. On the interior transmission eigenvalue problem. Int J Comput Sci Math, 2010, 3: 142-167 [18] Cakoni F, Kow P Z, Wang J N. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Probl Imag, 2021, 15: 445-474 [19] Cakoni F, Kress R. A boundary integral equation method for the transmission eigenvalue problem. Appl Anal, 2016, 96: 23-38 [20] Charalambopoulos A, Anagnostopoulos K A. On the spectrum of the interior transmission problem in isotropic elasticity. J Elasticity, 2008, 90: 295-313 [21] Chesnel L. Interior transmission eigenvalue problem for Maxwell's equations: the T-coercivity as an alternative approach. Inverse Problems, 2012, 28: 065005 [22] Colton D, Kirsch A, Päivärinta L. Far-field patterns for acoustic waves in an inhomogeneous medium. SIAM J Math Anal, 1989, 20: 1472-1483 [23] Colton D, Kress R.Inverse Acoustic and Electromagnetic Scattering Theory. 3rd ed. Berlin: Springer, 2013 [24] Colton D, Monk P. The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium-Numerical experiments. Quar J Mech Appl Math, 1989, 26: 323-350 [25] Cossonniére A, Haddar H. Surface integral formulation of the interior transmission problem. J Integral Equations Appl, 2013, 25: 341-376 [26] Hähner P. On the uniqueness of the shape of a penetrable, anisotropic obstacle. J Comput Appl Math, 2000, 116: 167-180 [27] Harris I, Cakoni F, Sun J. Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids. Inverse Problems, 2014, 30: 035016 [28] Harris I, Kleefeld A. The inverse scattering problem for a conductive boundary condition and transmission eigenvalues. Appl Anal, 2020, 99(3): 508-529 [29] McLaughlin J R, Polyakov P L. On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues. J Differential Equations, 1994, 107: 351-382 [30] McLaughlin J R, Polyakov P L, Sacks P E. Reconstruction of a spherically symmetric speed of sound. SIAM J Appl Math, 1994, 54: 1203-1223 [31] Päivärinta L, Sylvester J. Transmission eigenvalues. SIAM J Math Anal, 2008, 40: 738-753 [32] Rynne B P, Sleeman B D. The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J Math Anal, 1991, 22: 1755-1762 [33] Xiang J L, Yan G Z. Uniqueness of the inverse transmission scattering with a conductive boundary condition. Acta Math Sci, 2021, 41B(3): 925-940 |