[1] Abdulhadi Z, Muhanna Y, Khuri S. On univalent solutions of the biharmonic equations. J Inequal Appl, 2005, 5: 469-478 [2] Abdulhadi Z, Muhanna Y, Khuri S. On some properties of solutions of the biharmonic equation. Appl Math Comput, 2006, 177: 346-351 [3] Abdulhadi Z, Muhanna Y. Landau's theorems for biharmonic mappings. J Math Anal Appl, 2008, 338: 705-709 [4] Aghalary R, Mohammadian A, Jahangiri J. Landau-bloch theorems for bounded biharmonic mappings. Filomat, 2019, 33(14): 4593-4601 [5] Chen H H. On the Bloch constant, Approximation Complex Analysis,Potential Theory. Dordrecht: Springer, 2001: 129-161 [6] Chen H H, Gauthier P M, Hengartner W. Bloch constants for planar harmonic mappings. Proc Amer Math Soc, 2000, 128(11): 3231-3240 [7] Chen H H, Gauthier P M. The Landau theorem and Bloch theorem for planar harmonic and pluriharmonic mappings. Proc Amer Math Soc, 2011, 139(2): 583-595 [8] Chen S L, Ponnusamy S, Rasila A. Coefficient estimates, Landau's theorem and Lipschitz-type spaces on planar harmonic mappings. J Aust Math Soc, 2014, 96(2): 198-215 [9] Chen S L, Ponnusamy S, Wang X. Properties of some classes of planar harmonic and planar biharmonic mappings. Complex Anal Oper Theory, 2011, 5: 901-916 [10] Chen S L, Ponnusamy S, Wang X. Coefficient estimates and Landau-Bloch's constant for planar harmonic mappings. Bulletin of the Malaysian Mathematical Sciences Society, Second Series, 2011, 34(2): 255-265 [11] Chen S L, Ponnusamy S, Wang X. On some properties of solutions of the $p$-harmonic equation. Filomat, 2013, 27(4): 577-591 [12] Chen S F, Liu M S. Landau-type theorems and bi-Lipschitz theorems for bounded biharmonic mappings. Monatsh Math, 2020,193(4): 783-806 [13] Colonna F. The Bloch constants of bounded harmonic mappings. Indiana Univ Math J, 1989, 38: 829-840 [14] Dorff M, Nowak M. Landau's theorem for planar harmonic mappings. Comput Meth Funct Theory, 2000, 4(1): 151-158 [15] Grigoryan A. Landau and Bloch theorems for harmonic mappings. Complex Variable Theory Appl, 2006, 51(1): 81-87 [16] Harris L A. On the size of balls covered by analytic transformations. Monatsh Math, 1977, 83: 9-23 [17] Huang X Z, Fu D M. Estimates on the univalent radius and Bloch constants for planar harmonic mappings under differential operator (Chinese). Chin Ann Math, 2013, 34A(6): 653-662 [18] Huang X Z.Sharp estimate on univalent radius for planar harmonic mappings with bounded Fréchet derivative (in Chinese). Sci Sin Math, 2014, 44(6): 685-692 [19] Lewy H. On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull Amer Math Soc, 1936, 42: 689-692 [20] Lin R Y, Liu M S, Ponnusamy S. The Bohr-type inequalities for holomorphic mappings with Lacunary series in several complex variables. Acta Mathematica Scientia, 2023, 43B(1): 63-79 [21] Liu M S. Landau's theorems for biharmonic mappings. Complex Variables and Elliptic Equations, 2008, 53(9): 843-855 [22] Liu M S. Estimates on Bloch constants for planar harmonic mappings. Sci China Ser A-Math, 2009, 52(1): 87-93 [23] Liu M S, Chen H H. The Landau-Bloch type theorems for planar harmonic mappings with bounded dilation. J Math Anal Appl, 2018, 468(2): 1066-1081 [24] Liu M S, Liu Z W. On Bloch constants for certain Harmonic mappings. Southeast Asian Bull Math, 2013, 37(2): 211-220 [25] Liu M S, Liu Z X, Xu J F. Landau-type theorems for certain biharmonic mappings. Abstr Appl Anal, 2014, 2014: Article ID 925947 [26] Liu M S, Luo L F. Landau-type theorems for certain bounded biharmonic mappings. Results Math, 2019, 74(4): Article ID 170 [27] Liu M S, Luo L F. Precise values of the Bloch constants of certain log-$p$-harmonic mappings. Acta Mathematica Scientia, 2021, 41B(1): 297-310 [28] Liu M S, Luo L F, Luo X. Landau-Bloch type theorems for strongly bounded harmonic mappings. Monatsh Math, 2020, 191(1): 175-185 [29] Liu M S, Xie L, Yang L M. Landau's theorems for biharmonic mappings (II). Math Methods Appl Sci, 2017, 40(7): 2582-2595 [30] Liu M S, Liu Z W, Zhu Y C. Landau's theorems for certain biharmonic mappings. Acta Mathematica Sinica, Chinese Series, 2011, 54: 69-80 [31] Liu M S, Wu F, Yang Y. Sharp estimates of quasi-convex mappings of type B and order alpha. Acta Mathematica Scientia, 2019, 39B(5): 1265-1276 [32] Liu X S. Sharp distortion theorems for a class of biholomorphic mappings in several complex variables. Acta Mathematica Scientia, 2022, 42B(2): 454-466 [33] Mocanu P T. Starlikeness and convexity for nonanalytic functions in the unit disc. Mathematica (Cluj), 1980, 22(45): 77-83 [34] Muhanna Y, Schober G. Harmonic mappings onto convex mapping domains. Canad J Math, 1987, 39(6): 1489-1530 |