[1] Albrecher H, Thonhauser S. Optimality results for dividend problems in insurance. Revista de la Real Academia de Ciencias Exactas, Fäsicasy Naturales, Serie A, Matematicas, 2009, 103(2): 295-320 [2] Artin E. The Gamma Function.New York: Holt, Rinehart and Winston, 1964. English translation of German original, Einführung in die Theorie der Gammafunktion, Teubner, 1931 [3] Avanzi B. Strategies for dividend distribution: A Review. N Am Actuar J, 2009, 13(2): 217-251 [4] Avanzi B, Lau H, Wong B. Optimal periodic dividend strategies for spectrally positive Lévy risk processes with fixed transaction costs. Scand Actuar J, 2021, 8: 645-670 [5] Avanzi B, Lau H, Wong B. On the optimality of joint periodic and extraordinary dividend strategies. Eur J Oper Res, 2021, 295(3): 1189-1210 [6] Avram F, Palmowski Z, Pistorius M. On the optimal dividend problem for a spectrally negative Lévy process. Ann Appl Probab, 2007, 17(1): 156-180 [7] Avram F, Palmowski Z, Pistorius M.On Gerber-Shiu functions and optimal dividend distribution for a Lévy risk process in the presence of a penalty function. Ann Appl Probab, 2015, 25(4): 1868-1935 [8] Broadie M, Chernov M, Sundaresan S. Optimal debt and equity values in the presence of chapter 7 and chapter 11. J Finance, 2007, 62(3): 1341-1377 [9] Broadie M, Kaya O. A binomial lattice method for pricing corporate debt and modeling Chapter 11. J Financ Quant Anal, 2007, 42(2): 279-312 [10] Cheng X, Jin Z, Yang H. Optimal insurance strategies: a hybrid deep learning markov chain approximation approach. Astin Bull, 2020, 50(2): 1-29 [11] Cheung E, Wong J. On the dual risk model with Parisian implementation delays in dividend payments. Eur J Oper Res, 2017, 257(1): 159-173 [12] Constantin N.Convex Functions and Their Applications. A Contemporary Approach. New York: Springer, 2010 [13] Corbae D, D'Erasmo P. Reorganization or liquidation: bankruptcy choice and firm dynamics. Unpublished Working Paper. National Bureau of Economic Research, 2017 [14] Dai M, Jiang L, Lin J. Pricing corporate debt with finite maturity and chapter 11 proceedings. Quant Financ, 2013, 13(12): 1855-1861 [15] De Angelis T. Optimal dividends with partial information and stopping of a degenerate reflecting diffusion. Financ Stoch, 2020, 24(1): 71-123 [16] De Finetti B. Su un'impostazion alternativa dell teoria collecttiva del rischio//Trans XVth Internat Congress Actuaries, 1957, 2: 433-443 [17] Gerber H. Entscheidungskriterien fur den zusammengesetzten Poisson prozess. Mit Verein Schweiz Versicherungsmath, 1969, 69: 185-227 [18] Höjgaard B, Taksar M. Controlling risk exposure and dividends payout schemes: insurance company example. Math Financ, 1999, 9(2): 153-182 [19] Ikeda N, Watanabe S.Stochastic Differential Equations and Diffusion Processes. New York: North Holland-Kodansha, 1981 [20] Jacod J, Shiryaev A.Limit Theorems for Stochastic Processes. Second ed. Berlin: Springer-Verlag, 2003 [21] Jeanblanc M, Shiryaev A. Optimization of the flow of dividends. Russian Mathematical Surveys, 1995, 50(2): 257-277 [22] Jin Z, Liao H, Yang Y, Yu X. Optimal dividend strategy for an insurance group with contagious default risk. Scand Actuar J, 2021, 4: 335-361 [23] Kyprianou A.Introductory Lectures on Fluctuations of Lévy Processes with Applications. Berlin: Springer Science and Business Media, 2014 [24] Kyprianou A, Loeffen R. Refracted Lévy processes. Ann I H Poincare-PR, 2010, 46(1): 24-44 [25] Kyprianou A, Palmowski Z. Distributional study of de Finetti's dividend problem for a general Lévy insurance risk process. J Appl Probab, 2007, 44(2): 428-443 [26] Leland H. Corporate debt value, bond covenants,optimal capital structure. J Finance, 1994, 49(4): 1213-1252 [27] Li B, Tang Q, Wang L, Zhou X. Liquidation risk in the presence of Chapters 7 and 11 of the US bankruptcy code. J Financ Eng, 2014, 1(3): 1-19 [28] Li J, Liu G, Zhao J. OPtimal dividend-penalty strategies for insurance risk model with surplus-dependent premium. Acta Math Sci, 2020, 40B(1): 170-198 [29] Li X, Liu H, Tang Q, Zhu J. Liquidation risk in insurance under contemporary regulatory frameworks. Insur Math Econ, 2020, 93(1): 36-49 [30] Li Y, Zhou X. On pre-exit joint occupation times for spectrally negative Lévy processes. Stat Probabil Lett, 2014, 94(1): 48-55 [31] Loeffen R. On optimality of the barrier strategy in de Finetti's dividend problem for spectrally negative Lévy processes. Ann Appl Probab, 2008, 18(5), 1669-1680 [32] Loeffen R. An optimal dividends problem with transaction costs for spectrally negative Lévy processes. Insur Math Econ, 2009, 45(1): 41-48 [33] Loeffen R, Renaud J. De Finetti's optimal dividends problem with an affine penalty function at ruin. Insur Math Econ, 2010, 46(1): 98-108 [34] Loeffen R, Renaud J, Zhou X. Occupation times of intervals until first passage times for spectrally negative Lévy processes. Stoch Proc Appl, 2014, 124(3): 1408-1435 [35] Noba K. On the optimality of double barrier strategies for Lévy processes. Stoch Proc Appl, 2021, 131(1): 73-102 [36] Noba K, Pérez J, Yu X. On the bailout dividend problem for spectrally negative Markov additive models. SIAM J Control Optim, 2020, 58(2): 1049-1076 [37] Paseka A.Debt valuation with endogenous default and Chapter 11 reorganization. Working paper, University of Arizona, 2003 [38] Pistorius M. On exit and ergodicity of the spectrally one-sided Lévy process reflected at its infimum. J Theor Probab, 2004, 17(1): 183-220 [39] Pérez J, Yamazaki K, Yu X. On the bail-out optimal dividend problem. J Optim Theory Appl, 2018, 179(2): 553-568 [40] Renaud J. On the time spent in the red by a refracted Lévy risk process. J Appl Probab, 2014, 51(4): 1171-1188 [41] Renaud J, Zhou X. Distribution of the present value of dividend payments in a Lévy risk model. J Appl Probab, 2007, 44(2): 420-427 [42] Shreve S, Lehoczky J, Gaver D. Optimal consumption for general diffusions with absorbing and reflecting barriers. SIAM J Control Optim, 1984, 22(1): 55-75 [43] Wang W, Wang Y, Chen P, Wu X. Dividend and capital injection optimization with transaction cost for spectrally negative Lévy risk processes. J Optim Theory Appl, 2022, 194(3): 924-965 [44] Wang W, Yu X, Zhou X.On optimality of barrier dividend control under endogenous regime switching with application to Chapter 11 bankruptcy. arXiv:2108.01800 [45] Wang W, Zhou X. General drawdown-based de Finetti optimization for spectrally negative Lévy risk processes. J Appl Probab, 2018, 55(2): 513-542 [46] Zhu J, Siu T, Yang H. Singular dividend optimization for a linear diffusion model with time-inconsistent preferences. Eur J Oper Res, 2020, 285(1): 66-80 |