[1] Blesgen T. A generalizaion of the Navier-Stokes equations to two-phase flow. J Phys D Appl Phys, 1999, 32: 1119-1123 [2] Chen M X, Guo X. Global large solutions for a coupled compressible Navier-Stokes/Allen-Cahn system with initial vacuum. Nonlinear Anal Real World Appl, 2017, 37: 350-373 [3] Chen S, Zhu C. Blow-up criterion and the global existence of strong/classical solutions to Navier-Stokes/Allen-Cahn system. Z Angew Math Phys, 2021, 72(1): Art 14 [4] Chen Y, He Q, Huang B, Shi X. Global strong solution to a thermodynamic compressible diffuse interface model with temperature dependent heat-conductivity in 1-D. Math Methods Appl Sci, 2021, 44: 12945-12962 [5] Chen Y, He Q, Huang B, Shi X.The Cauchy problem for non-isentropic compressible Navier-Stokes/Allen-Cahn system with degenerate heat-conductivity. arXiv:2005.11205 [6] Dai W, Ding S, Li Y.Global strong solutions of the compressible Navier-Stokes/Allen-Cahn system with density-dependent viscosity. preprint [7] Ding S, Huang J, Liu X, Wen H. Global C$^\infty$-solutions to 1D compressible Navier-Stokes equations with density-dependent viscosity. Math Methods Appl Sci, 2011, 34(12): 1499-1511 [8] Ding S, Li Y, Luo W. Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn system in 1D. J Math Fluid Mech, 2013, 15(2): 335-360 [9] Ding S, Li Y, Tang Y. Strong solutions to 1D compressible Navier-Stokes/Allen-Cahn system with free boundary. Math Methods Appl Sci, 2019, 42(14): 4780-4794 [10] Freist$\rm\ddot{u}$hler H, Kotschote M. Phase-field and Korteweg-type models for the time-dependent flow of compressible two-phase fluids. Arch Ration Mech Anal, 2017, 224(1): 1-20 [11] Fang D, Zhang T. Compressible Navier-Stokes equations with vacuum state in one dimension. Commun Pure Appl Anal, 2004, 3(4): 675-694 [12] Fang D, Zhang T. Compressible Navier-Stokes equations with vacuum state in the case of general pressure law. Math Methods Appl Sci, 2006, 29(10): 1081-1106 [13] Grad H.Asymptotic theory of the Boltzmann equation II//Laurmann J, ed. Rarefied Gas Dynamics, Vol 1. New York: Academic Press, 1963: 26-59 [14] Guo Z, Jiang S, Xie F. Global existence and asymptotic behavior of weak solutions to the 1D compressible Navier-Stokes equations with degenerate viscosity coefficient. Asymptot Anal, 2008, 60(1/2): 101-123 [15] He Q, Shi X. Energy stable discontinuous Galerkin method for compressible Navier-Stokes-Allen-Cahn system. Commun Nonlinear Sci Numer Simul, 2021, 98: Art 105771 [16] Heida M, Malek J, Rajagopal K R. On the development and generalizations of Allen-Cahn and Stefan equations within a thermodynamic framework. Z Angew Math Phys, 2012, 63: 759-776 [17] Jiang S. Global smooth solutions of the equations of a viscous, heat-conducting, one-dimensional gas with density-dependent viscosity. Math Nachr, 1998, 190: 169-183 [18] Jiang S, Xin Z, Zhang P. Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods Appl Anal, 2005, 12(3): 239-251 [19] Kong H, Li, H, Zhang X. A blow-up criterion of spherically symmetric strong solutions to 3d compressible Navier-Stokes equations with free boundary. Acta Math Sci, 2016, 36B(4): 1153-1166 [20] Li Y, Yan Y, Ding S, Chen G. Global weak solutions fro 1D compressible Navier-Stokes/Allen-Cahn system with vacuum. Z Angew Math Phys, 2023, 74(1): Art 2 [21] Liu J. Local existence of solution to free boundary value problem for compressible Navier-Stokes equations. Acta Math Sci, 2012, 32B(4): 1298-1320 [22] Liu T, Xin Z, Yang T. Vacuum states of compressible flow. Discrete Conti Dyn Syst, 1998, 4: 1-32 [23] Okada M, Matu$\rm\breve{s}\dot{u}$-Ne$\rm\breve{c}$asov$\rm\acute{a}$ $\rm\breve{S}$, Makino T. Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity. Ann Univ Ferrara Sez VII (NS), 2002, 48: 1-20 [24] Qin Y, Huang L, Yao Z. Regularity of 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. J Differ Equ, 2008, 245: 3956-3973 [25] Su M. On global classical solutions to one-dimensional compressible Navier-Stokes/Allen-Cahn system with density-dependent viscosity and vacuum. Bound Value Probl, 2021, 2021: Art 92 [26] Vong S W, Yang T, Zhu C, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (II). J Differ Equ, 2003, 192(2): 475-501 [27] Yan Y, Ding S, Li Y. Strong solutions for 1D compressible Navier-Stokes/Allen-Cahn system with phase variable dependent viscosity. J Differ Equ, 2022, 326(25): 1-48 [28] Yang X. A novel fully decoupled scheme with second-order time accuracy and unconditional energy stability for the Navier-Stokes equations coupled with mass-conserved Allen-Cahn phase-field model of two-phase incompressible flow. Internat J Numer Methods Engrg, 2021, 122(5): 1283-1306 [29] Yang T, Yao Z, Zhu C. Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Commun Partial Differ Equ, 2001, 26(5/6): 965-981 [30] Yang T, Zhu C. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Comm Math Phys, 2002, 230(2): 329-363 [31] Yang T, Zhao H. A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity. J Differ Equ, 2002, 184(1): 163-184 [32] Zhang J. Regularity of solutions to 1D compressible Navier-Stokes-Allen-Cahn system. Appl Anal, 2021, 100(9): 1827-1842 |