[1] Monna A F. On weak and strong convergence in a $p$-adic Banach space. Nederl Akad Wetensch Verslagen, Afd Natuurkunde, 1943, 52: 207-211 [2] Monna A F. On non-Archimedean linear spaces. Nederl Akad Wetensch Verslagen, Afd Natuurkunde, 1943, 52: 308-321 [3] Monna A F. Linear functional equations in non-Archimedean Banach spaces. Nederl Akad Wetensch Verslagen, Afd Natuurkunde, 1943, 52: 654-661 [4] Moslehian M G, Sadeghi G A. A Mazur-Ulam theorem in non-Archimedean normed spaces. Nonlinear Analysis: An International Multidisciplinary Journal, 2008, 69(10): 3405-3408 [5] Kubzdela A. Isometries, Mazur-Ulam theorem and Aleksandrov problem for non-Archimedean normed spaces. Nonlinear Analysis Theory Methods & Applications, 2012, 75(4): 2060-2068 [6] Sánchezz J C, Garmendia J N. Isometries of ultrametric normed spaces. Annals of Functional Analysis, 2021, 12(4): Art 58 [7] Schikhof W H. Isometrical embeddings of ultrametric spaces into non-Archimedean valued fields. Indagationes Mathematicae (Proceedings), 1984, 87(1): 51-53 [8] Mazur S, Ulam S. Sur les transformationes isométriques despaces vectoriels normés. C R Acad Sci Paris, 1932, 194(3): 946-948 [9] Tingley D. Isometries of the unit sphere. Geometriae Dedicata, 1987, 22(3): 371-378 [10] Hu R. Extension of isometries on the unit sphere of $L_{p}$-space. Acta Mathematica Scientia, 2012, 32A(3): 510-520 [11] Wang R. On the isometric extension problem. Quaestiones Mathematicae, 2013, 36: 321-330 [12] Wang R.On isometric extension problem. Lecture Notes in Non-linear Analysis, 2020, 18 [13] Gao J M, Tan D N. On extension of isometries between unit spheres in $AL_p$-spaces $(1<p<\infty)$. Acta Mathematica Scientia, 2012, 32A(2): 387-394 [14] Yi J J, Wang R D, Wang X X. Extension of isometries between the unit spheres of complex $l_p(\Gamma)( p>1)$ spaces. Acta Mathematica Scientia, 2014, 34B(5): 1540-1550 [15] Wigner E P.Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren. Fredrik Vieweg und Sohn, 1931 [16] Bargmann V. Note on Wigner's theorem on symmetry operations. J Math Phys, 1964, 5: 862-868 [17] Sharma C S, Almeida D F. A direct proof of Wigner's theorem on maps which preserve transition probabilities between pure states of quantum systems. Annals of Physics, 1990, 197(2): 300-309 [18] Rätz J. On Wigner's theorem: remarks, complements, comments,corollaries. Aequ Math, 1996, 52(1): 1-9 [19] Molnár L. Wigner's unitary-antiunitary theorem. Journal of the Australian Mathematical Society, 1998, 65(3): 354-369 [20] Györy M. A new proof of Wigner's theorem. Reports on Mathematical Physics, 2004, 54(2): 159-167 [21] Chevalier G.Wigner's theorem and its generalizations. Handbook of Quantum Logic and Quantum Structures, 2007: 429-475 [22] Maksa G, Páles Z. Wigner's theorem revisited. Publicationes Mathematicae, 2012, 81(1/2): 243-249 [23] He K, Hou J C. A generalization of Wigner's theorem. Acta Mathematica Scientia, 2011, 31A(6): 1633-1636 [24] Huang X J, Tan D N. Wigner's theorem in atomic $L_{p}$-spaces ($p>0$). Publicationes Mathematicae, 2018, 92(3/4): 411-418 [25] Tan D N, Huang X J. Phase-isometries on real normed spaces. Journal of Mathematical Analysis and Applications, 2020, 488(1): 124058 [26] Turnek D I. On Wigner's theorem in strictly convex normed spaces. Publicationes Mathematicae, 2020, 97(3/4): 393-401 [27] Wang R D, Bugajewski D. On normed spaces with the Wigner property. Annals of Functional Analysis, 2020, 11: 523-539 [28] Iliĕvić D, Omladič M, TurnšekA. Phase-isometries between normed spaces. Linear Algebra and Its Applications, 2021, 612: 99-111 [29] Schikhof W H.Banach spaces over non-archimedean valued fields. Topology Proceedings, 1999: 547-581 [30] Kubzdela A.Selected Topics in non-Archimedean Banach Spaces. Wydawnictwo Naukowe Uniwersytetu Mikolaja Kopernika, 2018 [31] Perez-Garcia C, Schikhof W H.Locally Convex Spaces over non-Archimedean Valued Fields. Cambridge: Cambridge University Press, 2010 [32] Rooij A C M. Van Non-Archimedean Functional Analysis. New York: Marcel Dekker, 1978 |