[1] Arosio A, Panizzi S. On the well-posedness of the Kirchhoff string. Trans Amer Math Soc, 1996, 348(1): 305-330 [2] Bartsch T, Pankov A, Wang Z Q. Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math,2001, 3(4): 549-569 [3] Bartsch T, Wang Z Q. Existence and multiplicity results for superlinear elliptic problems on $\mathbb{R}^{N}$. Commun Partial Differential Equations, 1995, 20(10): 1725-1741 [4] Bellazzini J, Jeanjean L. On dipolar quantum gases in the unstable regime. SIAM J Math Anal, 2016, 48(3): 2028-2058 [5] Brezis H, Lieb E. A relation between pointwise convergence of functions and convergence functionals. Proc Amer Math Soc, 1983, 88(3): 486-490 [6] Cavalcanti M M, Domingos Cavalacanti V N, Soriano J A. Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation. Adv Differential Equations, 2001, 6(6): 701-730 [7] Cerami G, Solimini S, Struwe M. Some existence results for superlinear elliptic boundary value problem involving critical exponents. J Funct Anal, 1986, 69(6): 289-306 [8] Chen J H, Tang X H, Cheng B T. Existence and concentration of ground state sign-changing solutions for Kirchhoff type equations with steep potential well and nonlinearity. Topol Methods Nonlinear Anal, 2018, 51(1): 111-133 [9] D'Ancona P, Spagnolo S. Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent Math, 1992, 108(2): 247-262 [10] Ding Y H, Szulkin A. Bound states for semilinear Schrödinger equations with sign-changing potential. Calc Var Partial Differential Equations,2007, 29(3): 397-419 [11] Du M, Tian L, Wang J, Zhang F. Existence of ground state solutions for a super-biquadratic Kirchhoff-type equation with steep potential well. Appl Anal, 2016, 95(3): 627-645 [12] Feng R T, Tang C L. Ground state sign-changing solutions for a Kirchhoff equation with asymptotically 3-linear nonlinearity. Qual Theory Dyn Syst, 2021, 20(3): Art 91 [13] Hofer H. Variational and topological methods in partially odered Hilbert space. Math Ann, 1982, 261(4): 493-514 [14] Jia H F, Li G B. Multiplicity and concentration behaviour of positive solutions for Schrödinger-Kirchhoff type equations involving the $p$-Laplacian in $\mathbb{R}^{N}$. Acta Mathematica Scientia,2018, 38B(2): 391-418 [15] Jia H F, Luo X. Existence and concentrating behavior of solutions for Kirchhoff type equations with steep potential well. J Math Anal Appl, 2018, 467(2): 893-915 [16] Jiang Y, Zhou H S. Schrödinger-Poisson system with a steep well potential. J Differential Equations,2011, 251(3): 582-608 [17] Jin Q F. Multiple sign-changing solutions for nonlinear Schrödinger equations with potential well. Appl Anal,2020, 99(15): 2555-2570 [18] Kirchhoff G.Mechanik. Leipzig: Teubner, 1883 [19] Luo L P, Tang C L. Existence and concentration of ground state solutions for critical Kirchhoff-type equation with steep potential well. Complex Var Elliptic Equ, 2022, 67(7): 1756-1771 [20] Lushnikov P. Collaspse of Bose-Einstein codensates with dipole-dipole interactions. Phys Rev A, 2002, 66: 051601(R) [21] Lushnikov P. Collaspse and stable self-trapping for Bose-Einstein condensates with $1/r^{b}$ type attractive interatomic interaction potential. Phys Rev A, 2010, 82: 023615 [22] Mao A M, Zhang Z T. Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Nonlinear Anal, 2009, 70(3): 1275-1287 [23] Miranda C. Unsservazione su un teorema di Brouwer. Boll Unione Mat Ital, 1940, 3(107): 5-7 [24] Pi H, Zeng Y. Existence results for the Kirchhoff type equation with a general nonlinear term. Acta Mathematica Scientia, 2022, 42B(5): 2063-2077 [25] Rabinowitz P H.Variational methods for nonlinear eigenvalue problems//Prodi G. Eigenvalues of Nonlinear Problems. Berlin: Springer, 2009: 139-195 [26] Shuai W. Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J Differential Equations, 2015, 259(4): 1256-1274 [27] Sun J T, Wu T. Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J Differential Equations, 2014, 256(4): 1771-1792 [28] Tan J L, Li Y Y, Tang C L. The existence and concentration of ground state solutions for Chern-Simons-Schrödinger systems with a steep well potential. Acta Mathematica Scientia,2022, 42B(3): 1125-1140 [29] Wang Z P, Zhou H S. Positive solutions for nonlinear Schrödinger equations with deepening potential well. J Eur Math Soc,2009, 11(3): 545-573 [30] Willem M. Minimax Theorems.Boston: Birkháuser, 1996 [31] Xie Q L. Least energy nodal solution for Kirchhoff type problem with an asymptotically 4-linear nonlinearity. Appl Math Lett, 2020, 102: 106157 [32] Xie Q L, Ma S W. Existence and concentration of positive solutions for Kirchhoff-type problems with a steep well potential. J Math Anal Appl, 2015, 431(2): 1210-1223 [33] Zhang F, Du M. Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well. J Differential Equations, 2020, 269(11): 10085-10106 [34] Zhang J, Lou Z L. Existence and concentration behavior of solutions to Kirchhoff type equation with steep potential well and critical growth. J Math Phys, 2021, 62(1): 011506 [35] Zhang Z, Perera K. Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J Math Anal Appl, 2006, 317(2): 456-463 [36] Zhao L, Liu H, Zhao F. Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential. J Differential Equations,2013, 255(1): 1-23 [37] Zhong X J, Tang C L. The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem. Commun Pure Appl Anal, 2017, 16(2): 611-627 [38] Zhong X J, Tang C L. Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in $\mathbb{R}^3$. Nonlinear Anal,2018, 39: 166-184 |