[1] Maxwell J C. On the dynamical theory of gases. Phil Trans R Soc Lond, 1867, 157: 49-88 [2] Maisano G, Migliardo P, Aliotta F, et al.Evidence of anomalous acoustic behavior from Brillouin scattering in supercooled water. Phys Rev Lett, 1984, 52: 1025-1028 [3] Pelton M, Chakraborty D, Malachosky E, et al.Viscoelastic flows in simple liquids generated by vibrating nanostructures. Phys Rev Lett, 2013, 111: 244502 [4] Sette F, Ruocco G, Krisch M, et al.Collective dynamics in water by high energy resolution inelastic x-ray scattering. Phys Rev Lett, 1995, 75: 850-853 [5] Yong W A.Newtonian limit of Maxwell fluid flows. Arch Ration Mech Anal, 2014, 214(3): 913-922 [6] Chakraborty D, Sader J E.Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales. Physics of Fluids, 2015, 27: 052002 [7] Hu Y, Racke R.Compressible Navier-Stokes equations with revised Maxwell's law. J Math Fluid Mech, 2017, 19(1): 77-90 [8] Ebin D G.Motion of a slightly compressible fluid. Proc Natl Acad Sci USA, 1975, 72(2): 539-542 [9] Klainerman S, Majda A.Singular perturbations of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm Pure Appl Math, 1981, 34: 481-524 [10] Klainerman S, Majda A.Compressible and incompressible fluids. Comm Pure Appl Math, 1982, 35: 629-651 [11] Danchin R.Zero Mach number limit for compressible flows with periodic boundary conditions. Amer J Math, 2002, 124(6): 1153-1219 [12] Desjardins B, Grenier E, Lions P L, Masmoudi N.Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J Math Pures Appl, 1999, 78(5): 461-471 [13] Hoff D.The Zero-Mach limit of compressible flows. Comm Math Phys, 1998, 192(3): 543-554 [14] Lions P L, Masmoudi N.Incompressible limit for a viscous compressible fluid. J Math Pures Appl, 1998, 77(6): 585-627 [15] Desjardins B, Grenier E.Low Mach number limit of the viscous compressible flows in the whole space. Proc R Soc Lond Ser A Math Phys Eng Sci, 1999, 455: 2271-2279 [16] Ou Y.Incompressible limit of the Navier-Stokes equations for all time. J Differ Equ, 2009, 247: 3295-3314 [17] Alazard T.Low Mach number limit of the full Navier-Stokes equations. Arch Ration Mech Anal, 2006, 180(1): 1-73 [18] Ou Y.Low Mach number limit for the non-isentropic Navier-Stokes equations. J Differ Equ, 2009, 246(11): 4441-4465 [19] Hu Y, Wang N.Global existence versus blow-up results for one dimensional compressible Navier-Stokes equations with Maxwell's law. Math Nachr, 2019, 292(4): 826-840 [20] Wang N, Hu Y.Blowup of solutions for compressible Navier-Stokes equations with revised Maxwell's law. Appl Math Lett, 2020, 103: 106221 [21] Hu Y, Racke R, Wang N.Formation of singularities for one-dimensional relaxed compressible Navier-Stokes equations. J Diff Equ, 2022, 327: 145-165 [22] Taylor M E.Pseudodifferential operators and nonlinear PDE. Boston: Birkhüauser, 1991 [23] Yong W A.Singular perturbations of first-order hyperbolic systems with stiff source terms. J Differ Equ, 1999, 155(1): 89-132 [24] Zhang S.Low Mach number limit for the full compressible Navier-Stokes equations with Cattaneo's heat transfer law. Nonlinear Anal, 2019, 184: 83-94 [25] Racke R.Lectures on Nonlinear Evolution Equations. Weisbaden: Vieweg, 1992 |