[1] Aero E L, Bulganin A N, Kuvshinski E V.Asymmetric hydrodynamics. Prikl Mat Mech, 1965, 29(2): 297-308 [2] Lukaszewicz G.Micropolar Fluid: Theory and Applications, Modeling and Simulation in Science, Engineering and Thchnology. Boston: Birkhäuser, 1999 [3] Li F C, Zhang Z P.Zero Kinematic viscosity-magnetic diffusion limit of the incompressible viscous magnetohydrodynamic equations with Navier boundary conditions. Acta Math Sci, 2021, 41B(5): 1503-1536 [4] Li H M, Xiao Y L.Local well-posedness of strong solutions for the nonhomogeneous MHD equations with a slip boundary conditions. Acta Math Sci, 2020, 40B(2): 442-456 [5] Nowakowski B.Global existence of strong silutions to micropolar equations in cylindrical domians. Math Methods Appl Sci, 2015, 38(2): 311-329 [6] Xiao Y L, Xin Z P.On the inviscid limit of the 3D Navier-Stokes equations with generalized Navier-Slip boundary conditions. Commun Math Stat, 2013, 1(3): 259-279 [7] Xiao Y L, Xin Z P.On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm Pure Appl Math, 2007, 60(7): 1027-1055 [8] Eringen A C.Theory of micropolar fluids. J Math Mech, 1966, 16: 1-18 [9] Ladyzhenskaya O A.The Mathematical Theory of Viscous Incompressible Fluids. New York: Gordon and Breach, 1969 [10] Chen Q L, Miao C X.Global well-posedness for the micropolar fluid system in the critical Besov spaces. J Differ Equ, 2012, 252(3): 2698-2724 [11] Dong B Q, Chen Z M.Regularity criteria of weak solutions to the three-dimensional micropolar flows. J Math Phys, 2009, 50(10): 103525 [12] Dong B Q, Li J N, Wu J H.Global well-posedness and large-time decay for the 2D micropolar equations. J Differ Equ, 2017, 262(6): 3488-3523 [13] Galdi G P, Rionero S.A note on the existence and uniqueness of solutions of micropolar fluid equations. Int J Engrg Sci, 1977, 15(2): 105-108 [14] Jiu Q S, Liu J T, Wu J H, et al. On the initial- and boundary-value problem for 2D micropolar equations with only angular velocity dissipation. Z Angew Math Phys, 2017, 68(5): Art 107 [15] Liu J T, Wang S.Initial-boundary value problem for 2D micropolar equations without angular viscosity. Commun Math Sci, 2018, 16(8): 2147-2165 [16] Ye Z.Global existence of strong solution to the 3D micropolar equations with a damping term. Appl Math Lett, 2018, 83: 188-193 [17] Yamaguchi N.Existence of global strong solution to the micropolar fluid system in a bounded domain. Math Methods Appl Sci, 2005, 28(13): 1507-1526 [18] Ferreira L C F, Villamizar-Roa E J. On the existence and stability of solutions for the micropolar fluids in exterior domains. Math Meth Appl Sci, 2007, 30(10): 1185-1208 [19] Yang Y Y, Zhu M X.The zero limit of angular viscosity for the two-Dimensional micropolar fluid equations. Appl Math Lett, 2016, 57: 32-37 [20] Chen M T, Xu X Y, Zhang J W.The zero limits of angular and micro-rotational viscosities for the twodimensional micropolar fluid equations with boundary effect. Z Angew Math Phys, 2014, 65(4): 687-710 [21] Beirão da Veiga H, Crispo F. The 3-D inviscid limits result under slip boundary conditions. A negative answer. J Math Fluid Mech, 2012, 14(1): 55-59 [22] Berselli L C.Some results on the Navier-Stokes equations with Navier boundary conditions. Riv Math Univ Parma, 2010, 1(1): 1-75 [23] Iftimie D, Planas G.Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions. Nonlinearity, 2006, 19(4): 899-918 [24] Kato T.Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. Math Sci Res Inst Publ, 1984, 2: 85-98 [25] Masmoudi N.Remarks about the inviscid limit of the Navier-Stokes system. Comm Math Phys, 2007, 270(3): 777-788 [26] Bourguignon J P, Brezis H.Remarks on the Euler equation. J Funct Anal, 1974, 15: 341-363 [27] Yoshida Z, Giga Y.Remarks on spectra of operator rot. Math Z, 1990, 204(2): 235-245 [28] Ortega-Torres E E, Rojas-Medar M A. Magneto-micropolar fluid motion: global existence of strong solutions. Abstr Appl Anal, 1999, 4(2): 109-125 [29] Rojas-Medar M A. Magneto-micropolar fluid motion: Existence and uniqueness of strong solution. Math Nachr, 1997, 188: 301-319 |