[1] Alouges F, Soyeur A.On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness. Nonlinear Anal TMA, 1992, 18: 1071-1084 [2] Bresch D, Desjardins B.On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J Math Pures Appl, 2007, 87: 57-90 [3] Bresch D, Desjardins B.Some diffusive capillary models of Korteweg type. C R Math Acad Sci Paris, Sec M′ecanique, 2004, 332: 881-886 [4] Brull S, Mehats F.Derivation of viscous correction terms for the isothermal quantum Euler model. Z Angew Math Mech, 2010, 90: 219-230 [5] Chen R, Hu J, Wang D.Global weak solutions to the magnetohydrodynamic and Vlasov equations. J Math Fluid Mech, 2016, 18: 343-360 [6] Feireisl E.Dynamics of Viscous Compressible Fluids. Oxford: Oxford University Press, 2004 [7] Feireisl E, Novotny A, Petzeltova H.On the existence of globally defined weak solutions to the Navier-Stokes equations. J Math Fluid Mech, 2001, 3: 358-392 [8] Ferry D, Zhou J.Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling. Phys Rev B, 1993, 48: 7944-7950 [9] Guo B, Ding S. Landau-Lifshitz Equations. Singapore: Word Science, 2008 [10] Guo B, Hong M.The Landau-Lifshitz equations of the ferromagnetic spin chain and harmonic maps. Calc Var PDE, 1993, 1: 311-334 [11] Guo B,Wang G.Global finite weak solution to the viscous quantum Navier-Stokes Landau-Lifshitz-Maxwell model in 2-dimension. Ann Appl Math, 2016, 32: 111-132 [12] Gualdani M, Jungel A.Analysis of the viscous quantum hydrodynamic equations for semiconductors. European J Appl Math, 2004, 15: 577-595 [13] Gisclon M, Lacroix-Violet I.About the barotropic compressible quantum Navier-Stokes equations. Nonlin- ear Anal, 2015, 128: 106-121 |