[1] Börgens E, Kanzow C.Regularized Jacobi-type ADMM-methods for a class of separable convex optimization problems in Hilbert spaces. Comput Optim Appl, 2019, 73(3): 755-790 [2] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J.Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn, 2011, 3(1): 1-122 [3] Douglas J, Rachford H H.On the numerical solution of heat conduction problems in two and three space variables. Trans Amer Math Soc, 1956, 82(2): 421-439 [4] Eckstein J.Splitting Methods for Monotone Operators with Applications to Parallel Optimization[D]. Cambridge: Massachusetts Institute of Technology, 1989 [5] Fukushima M.A successive quadratic programming algorithm with global and superlinear convergence properties. Math Program, 1986, 35(3): 253-264 [6] Gertz E M, Wright S J.Object orientated software for quadratic programming. ACM Trans Math Software, 2003, 29, 58-81 [7] Glowinski R, Le Tallec P.Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM Philadelphia: Society for Industrial and Applied Mathematics, 1989 [8] Goldfarb D, Ma S Q, Scheinberg K.Fast alternating linearization methods for minimizing the sum of two convex functions. Math Program, 2013, 141(1-2): 349-382 [9] Goldstein T, O’Donoghue B, Setzer S, Baraniuk R. Fast alternating direction optimization methods. SIAM J Imaging Sci, 2014, 7(3): 1588-1623 [10] Han D R, Sun D F, Zhang L W.Linear rate convergence of the alternating direction method of multipliers for convex composite programming. Math Oper Res, 2018, 43(2): 622-637 [11] He B S, Liu H, Wang Z R, Yuan X M.A strictly contractive Peaceman-Rachford splitting method for convex programming. SIAM J Optim, 2014, 24(3): 1011-1040 [12] He B S, Ma F, Yuan X M.Convergence study on the symmetric version of admm with larger step sizes. SIAM J Imaging Sci, 2016, 9(3): 1467-1501 [13] He B S, Yuan X M.On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method. SIAM J Numer Anal, 2012, 50(2): 700-709 [14] He B S, Yuan X M.On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers. Numer Math, 2015, 130(3): 567-577 [15] Hong M Y, Luo Z Q, Razaviyayn M.Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J Optim, 2016, 26(1): 337-364 [16] Jian J B.A superlinearly convergent implicit smooth SQP algorithm for mathematical programs with nonlinear complementarity constraints. Comput Optim Appl, 2005, 31(3): 335-361 [17] Jian J B.Fast Algorithms for Smooth Constrained Optimization-Theoretical Analysis and Numerical Experiments. Beijing: Science Press, 2010 [18] Jian J B, Chao M T, Jiang X Z, Han D L.On the convexity and existence of solutions to quadratic programming problems with convex constraint. Pac J Optim, 2019, 15(1): 145-155 [19] Jian J B, Lao Y X, Chao M T, Ma G D.ADMM-SQP algorithm for two blocks linear constrained nonconvex optimization. Oper Res Trans, 2018, 22(2): 79-92 [20] Jian J B, Ma G D.A globally convergent QP-free algorithm for inequality constrained minimax optimization. Acta Math Sci, 2020, 40B: 1723-1738 [21] Jian J B, Tang C M, Hu Q J, Zheng H Y.A new superlinearly convergent strongly subfeasible sequential quadratic programming algorithm for inequality-constrained optimization. Numer Func Anal Optim, 2008, 29(3/4): 376-409 [22] Jian J B, Zhang C, Yin J H, Yang L F, Ma G D.Monotone splitting sequential quadratic optimization algorithm with applications in electric power systems. J Optim Theory Appl, 2020, 186: 226-247 [23] Jian J B, Liu P J, Yin J H, Zhang C, Chao M T.A QCQP-based splitting SQP algorithm for two-block nonconvex constrained optimization problems with application. J Comput Appl Math, 2021, 390: 113368 [24] Kellogg R B.A nonlinear alternating direction method. Math Comput, 1969, 23(105): 23-27 [25] Li G Y, Pong T K.Global convergence of splitting methods for nonconvex composite optimization. SIAM J Optim, 2015, 25(4): 2434-2460 [26] Lions P L, Mercier B.Splitting algorithms for the sum of two nonlinear operators. SIAM J Numer Anal, 1979, 16(6): 964-979 [27] Marchuk G I.Splitting and alternating direction methods// Lions J L. Handbook of Numerical Analysis. |