[1] Aarach N. Global well-posedness of 2D Hyperbolic perturbation of the Navier-Stokes system in a thin strip. arXiv e-prints, arXiv:2111.13052 [2] Alexandre R, Wang Y -G, Xu C -J, Yang T. Well-posedness of the Prandtl equation in Sobolev spaces. J Amer Math Soc, 2015, 28(3): 745-784 [3] Chen D, Ren S, Wang Y, Zhang Z. Global well-posedness of the 2-D magnetic Prandtl model in the Prandtl-Hartmann regime. Asymptot Anal, 2020, 120(3/4): 373-393 [4] Chen D, Wang Y, Zhang Z. Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow. Ann Inst H Poincaré Anal Non Linéaire, 2018, 35(4): 1119-1142 [5] Dietert H, Gérard-Varet D. Well-posedness of the Prandtl equations without any structural assumption. Ann PDE, 2019, 5(1): Art 8 [6] E W, Engquist B. Blowup of solutions of the unsteady Prandtl’s equation. Comm Pure Appl Math, 1997, 50(12): 1287-1293 [7] Gérard-Varet D, Dormy E. On the ill-posedness of the Prandtl equation. J Amer Math Soc, 2010, 23(2): 591-609 [8] Gérard-Varet D, Iyer S, Maekawa Y. Improved well-posedness for the Triple-Deck and related models via concavity Preprint. arXiv:2205.15829 [9] Gérard-Varet D, Masmoudi N. Well-posedness for the Prandtl system without analyticity or monotonicity. Ann Sci Ec Norm Supér (4), 2015, 48(6): 1273-1325 [10] Gérard-Varet D, Masmoudi N, Vicol V. Well-posedness of the hydrostatic Navier-Stokes equations. Anal PDE, 2020, 13(5): 1417-1455 [11] Gérard-Varet D, Prestipino M. Formal derivation and stability analysis of boundary layer models in MHD. Z Angew Math Phys, 2017, 68(3): Art 76 [12] Guo Y, Nguyen T. A note on Prandtl boundary layers. Comm Pure Appl Math, 2011, 64(10): 1416-1438 [13] Ignatova M, Vicol V. Almost global existence for the Prandtl boundary layer equations. Arch Ration Mech Anal, 2016, 220(2): 809-848 [14] Kukavica I, Masmoudi N, Vicol V, Wong T K. On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions. SIAM J Math Anal, 2014, 46(6): 3865-3890 [15] S. Li and F. Xie. Global solvability of 2D MHD boundary layer equations in analytic function spaces. J Differential Equations, 299:362-401, 2021. [16] Li W -X, Masmoudi N, Yang T. Well-posedness in Gevrey function space for 3D Prandtl equations without structural assumption. Comm Pure Appl Math, 2022, 75(8): 1755-1797 [17] Li W -X, Wu D, Xu C -J. Gevrey class smoothing effect for the Prandtl equation. SIAM J Math Anal, 2016, 48(3): 1672-1726 [18] Li W -X, Xu R. Gevrey well-posedness of the hyperbolic Prandtl equations. Commun Math Res, doi: 10.4208/cmr.2021-0104, 2022 [19] Li W -X, Xu R. Well-posedness in Sobolev spaces of the two-dimensional MHD boundary layer equations without viscosity. Electron Res Arch, 2021, 29(6): 4243-4255 [20] Li W -X, Yang T. Well-posedness in Gevrey function spaces for the Prandtl equations with non-degenerate critical points. J Eur Math Soc, 2020, 22(3): 717-775 [21] Li W -X, Yang T. Well-posedness of the MHD boundary layer system in Gevrey function space without structural assumption. SIAM J Math Anal, 2021, 53(3): 3236-3264 [22] Li W -X, Yang T. 3D hyperbolic Navier-Stokes equations in a thin strip: global well-posedness and hydrostatic limit in Gevrey space. Commun Math Anal Appl, doi:10.4208/cmaa.2022-0007, 2022 [23] Liu C -J, Wang D, Xie F, Yang T. Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces. J Funct Anal, 2020, 279(7): 108637 [24] Liu C -J, Wang Y -G, Yang T. A well-posedness theory for the Prandtl equations in three space variables. Adv Math, 2017, 308: 1074-1126 [25] Liu C -J, Xie F, Yang T. MHD boundary layers theory in Sobolev spaces without monotonicity I: Wellposedness theory. Comm Pure Appl Math, 2019, 72(1): 63-121 [26] Liu N, Zhang P. Global small analytic solutions of MHD boundary layer equations. J Differential Equations, 2021, 281: 199-257 [27] Masmoudi N, Wong T K. On the Hs theory of hydrostatic Euler equations. Arch Ration Mech Anal, 2012, 204(1): 231-271 [28] Masmoudi N, Wong T K. Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Comm Pure Appl Math, 2015, 68(10): 1683-1741 [29] Paicu M, Zhang P. Global existence and the decay of solutions to the Prandtl system with small analytic data. Arch Ration Mech Anal, 2021, 241(1): 403-446 [30] Paicu M, Zhang P. Global hydrostatic approximation of hyperbolic Navier-Stokes system with small Gevrey class data. Sci China Math, 2022, 65(6): 1109-1146 [31] Paicu M, Zhang P, Zhang Z. On the hydrostatic approximation of the Navier-Stokes equations in a thin strip. Adv Math, 2020, 372: 107293 [32] Renardy M. Ill-posedness of the hydrostatic Euler and Navier-Stokes equations. Arch Ration Mech Anal, 2009, 194(3): 877-886 [33] Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm Math Phys, 1998, 192(2): 433-461 [34] Tao T. Nonlinear Dispersive Equations: Local and Global Analysis. Volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; Providence, RI: American Mathematical Society, 2006 [35] Wang C, Wang Y -X. Optimal Gevrey stability of hydrostatic approximation for the Navier-Stokes equations in a thin domain. arXiv e-prints, page arXiv:2206.03873v2 [36] Wang C, Wang Y, Zhang P. On the global small solution of 2-D Prandtl system with initial data in the optimal Gevrey class. arXiv e-prints, page arXiv:2103.00681 [37] Xie F, Yang T. Global-in-time stability of 2D MHD boundary layer in the Prandtl-Hartmann regime. SIAM J Math Anal, 2018, 50(6): 5749-5760 [38] Xin Z, Zhang L. On the global existence of solutions to the Prandtl’s system. Adv Math, 2004, 181(1): 88-133 [39] Xu C -J, Zhang X. Long time well-posedness of Prandtl equations in Sobolev space. J Differential Equations, 2017, 263(12): 8749-8803 [40] Yang T. Vector fields of cancellation for the Prandtl operators. Commun Math Anal Appl, 2022, 1(2): 345-354 [41] Zhang P, Zhang Z. Long time well-posedness of Prandtl system with small and analytic initial data. J Funct Anal, 2016, 270(7): 2591-2615 |