[1] Anderson R J. Simple zeros of the Riemann zeta-function. J Number Theory, 1983, 17: 176-182 [2] Bauer P. Zeros of Dirichlet L-series on the critical line. Acta Arith, 2000, 93: 37-52 [3] Balasubramanian R, Conrey J B, Heath-Brown D R. Asymptotic mean square of the product of the Riemann zeta-function and a Dirichlet polynomial. J Reine Angew Math, 1985, 357: 161-181 [4] Bui H, Conrey J B, Young M. More than 41% of the zeros of the zeta function are on the critical line. Acta Arith, 2011, 150(1): 35-64 [5] Conrey J B. More than two fifths of the zeros of the Riemann zeta function are on the critical line. J Reine Angew Math, 1989, 339: 1-26 [6] Conrey J B, Iwaniec H, Soundararajan K. Asymptotic large sieve. arXiv: 1105.1176 [7] Conrey J B, Iwaniec H, Soundararajan K. Critical zeros of Dirichlet L-function. J Reine Angew Math, 2013, 681: 175-198 [8] Farmer D. Counting distinct zeros of the Riemann zeta-function. Electron J Combin, 1995, 2: Art 1 [9] Feng S. Zeros of the Riemann zeta function on the critical line. J Number Theory, 2012, 132(4): 511-542 [10] Heath-Brown D R. Simple zeros of the Riemann zeta-function on the critical line. Bull Lond Math Soc, 1979, 11: 17-18 [11] Levinson N. More than one third of zeros of Riemann’s zeta-function are on σ = 1/2. Adv Math, 1974, 13: 383-436 [12] Littlewood J E. On the zeros of the Riemann Zeta-function. Cambridge Phil Soc Proc, 1924, 22: 295-318 [13] Pratt K, Robles N, Zaharescu A, Zeindler D. More than five-twelfths of the zeros of are on the critical line. Res Math Sci, 2020, 7(1): Art 2 [14] Titchmarsh E C. The theory of the Riemann zeta-function. revised by D. R. Heath-Brown. 2nd Ed. Oxford: Clarendon Press, 1986 [15] Wu X. Distinct zeros of the Riemann Zeta-function. Quart J Math, 2015, 66: 759-771 [16] Wu X. Distinct zeros and simple zeros for the family of Dirichlet L-functions. Quart J Math, 2016, 67: 757-779 [17] Wu X. The twisted mean square and critical zeros of Dirichlet L-functions. Math Z, 2019, 293: 825-865 |