[1] Ackermann N. On a periodic Schrödinger equation with nonlocal superlinear part. Math Z, 2004, 248(2):423-443 [2] Ambrosio V. Concentrating solutions for a class of nonlinear fractional Schrödinger equations in $\mathbb{R}$N. Rev Mat Iberoam, 2017. arXiv:1612.02388 [3] Ambrosio V. Concentration phenomena for a fractional Choquard equation with magnetic field. Dyn Partial Differ Equ, 2019, 16(2):125-149 [4] Ambrosio V, d'Avenia P. Nonlinear fractional magnetic Schrodinger equation:existence and multiplicity. J Differential Equations, 2018, 264(5):3336-3368 [5] Ambrosio V. Multiplicity and concentration of solutions for a fractional Kirchhoff equation with magnetic field and critical growth. Ann Henri Poincaré, 2019. arXiv:1810.04561. DOI:https://doi.org/10.1007/s00023-019-00803-5 [6] Ambrosio V. Multiplicity and concentration results for a fractional Choquard equation via penalization method. Potential Analysis, 2019, 50(1):55-82 [7] Ambrosio V. Multiple concentrating solutions for a fractional Kirchhoff equation with magnetic fields. Discrete Contin Dyn Syst, 2019. arXiv:1808.09295 [8] Ambrosetti A, Rabinowitz P, Dual variational methods in critical points theory and applications. J Funct Anal, 1973, 14:349-381 [9] Alves C O, Cassani D, Tarsi C, Yang M. Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in $\mathbb{R}$2. J Differential Equations, 2016, 261(3):1933-1972 [10] Alves C O, Gao F, Squassina M, Yang M. Singularly perturbed critical Choquard equations. J Differential Equations, 2017, 263(7):3943-3988 [11] Alves C O, Miyagaki O H. Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb{R}$N via penalization method. Calc Var Partial Differential Equations, 2016, 55(3):19 pp [12] Cassani D, Zhang D. Ground states and semiclassical states of nonlinear choquard equations involving hardy-littlewood-sobolev critical growth. arXiv:1611.02919v1[math.AP] [13] Cingolani S, Clapp M, Secchi S, Multiple solutions to a magnetic nonlinear choquard equation. Z Angew Math Phys, 2012, 63:207-248 [14] d'Avenia P, Siciliano G, Squassina M. On fractional Choquard equations. Math Models Methods Appl Sci, 2015, 25(8):1447-1476 [15] d'Avenia P, Squassina M. Ground states for fractional magnetic operators. ESAIM Control Optim Calc Var, 2018, 24(1):1-24 [16] del Pino M, Felmer P L. Local mountain passes for semilinear elliptic problems in unbounded domains. Calc Var Partial Differential Equations, 1996, 4(2):121-137 [17] Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136(5):521-573 [18] Ekeland I, On the variational principle. J Math Anal Appl, 1974, 47:324-353 [19] Felmer P, Quaas A, Tan J, Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian. Poc Roy Soc Edinburgh Sect A, 2012, 142:1237-1262 [20] Goel Divya, Radulescu V, Sreenadh K. Coron problem for nonlocal equations invloving Choquard nonlinearity. Advanced nonlinear studies, 2020, 20(1):141-161 [21] Goel Divya, Sreenadh K, Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity. Nonlinear Analysis, 2019, 186:162-186 [22] Ichinose T. Magnetic relativistic Schrödinger operators and imaginary-time path integrals, Mathematical physics, spectral theory and stochastic analysis. Oper Theory Adv Appl, 232. Basel:Birkhăuser/Springer, 2013:247-297 [23] Lieb E H, Loss M. Analysis, Graduate Studies in Mathematics. Vol 14. Providence:American Mathematical Society, 2001 [24] Molica Bisci G, Radulescu V, Servadei R. Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and its Application, 162. Cambridge University Press, 2016 [25] Moroz V, Van Schaftingen J. Semi-classical states for the Choquard equation. Calc Var Partial Differential Equations, 2015, 51(1/8):199-235 [26] Moser J, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations. Comm Pure Appl Math, 1960, 13:457-468 [27] Mukherjee Tuhina, Sreenadh K. On Concentration of least energy solutions for magnetic critical Choquard equations. Journal of Mathematical Analysis and Applications, 2018, 464(1):402-420 [28] Secchi S. A note on Schrödinger-Newton systems with decaying electric potential. Nonlinear Anal, 2010, 72(9/8):3842-3856 [29] Shen Z, Gao F, Yang M. Ground states for nonlinear fractional Choquard equations with general nonlinearities. Math Methods Appl Sci, 2016, 39(14):4082-4098 [30] Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm Pure Appl Math, 2007, 60(1):67-112 [31] Szulkin A, Weth T. The method of Nehari manifold. In Handbook of nonconvex analysis and applications. Somerville, MA:Int Press, 2010:597-632 [32] Teng K, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent. J Differ Equ, 2016, 261:3061-3106 [33] Teng K. Ground state solutions for the nonlinear fractional Schrödinger-Poisson system, Applicable Analysis, 2018. https://doi.org/10.1080/00036811.2018.1441998 [34] Wei J, Winter M. Strongly interacting bumps for the Schrödinger-Newton equations. J Math Phys, 2009, 50(1):012905, 22 [35] Willem M. Minimax theorems, volume 24 of Progress in Nonlinear Differential Equations and their Applications. Boston, MA:Birkhăuser Boston, Inc, 1996 |