[1] Bender C, Sottinen T, Valkeila E. Fractional processes as models in stochastic finance//Di Nunno G, Oksendal B. Advanced Mathematical Methods for Finance. Berlin, Heidelberg:Springer, 2010 [2] Bingham N H, Kiesel R. Risk-Neutral Valuation:Pricing and Hedging of Financial Derivatives. London:Springer-Verlag, 2004 [3] Britten-Jones M, Neuberger A. Arbitrage pricing with incomplete markets. Applied Mathematical Journal, 1996, 3(4):347-363 [4] Cutland N J, Roux A. Derivative Pricing in Discrete Time. London:Springer-Verlag, 2012 [5] Dalang R C, Morton A, Willinger W. Equivalent martingale measures and no-arbitrage in stochastic securities market models. Stoch Stoch Rep, 1990, 29:185-201 [6] Degano I L, Ferrando S E, González A L. Trajectory Based Market Models. Evaluation of Minmax Price Bounds. Dynamics of Continuous, Discrete and Impulsive Systems Series B:Applications & Algorithms, 2018, 25(2):97-128 [7] Elliott R J, Kopp P E. Mathematics of Financi al Markets. New York:Springer-Verlag, 2005 [8] Ferrando S E, Fleck A, González A L, Rubtsov A. Trajectorial asset models with operational assumptions. Quantitative Finance and Economics, 2019, 3(4):661-708 [9] Ferrando S E, González A L, Degano I L, Rahsepar M. Trajectorial Market Models. Arbitrage and Pricing Intervals. Revista de la Unión Matemática Argentina, 2019, 60(1):149-185 [10] Ferrando S E, González A L. Trajectorial martingale transforms. Convergence and Integration. New York Journal of Mathematics, 2018, 24:702-738 [11] Föllmer H, Schied A. Stochastic Finance:An Introduction in Discrete Time. 3rd Edition. Berlin:De Gruyter, 2011 [12] Jarrow R A, Protter P, Sayit H. No arbitrage without semimartingales. The Annals of Applied Probability, 2009, 19(2):596-616 [13] Jacod J, Shirayev H. Local martingales and the fundamental asset pricing theorems in the discrete-time case. Finance & Stochastics, 1990, 2(3):259-273 [14] Kamara A, Miller T W. Daily and Intradaily Tests of European Put-Call Parity. The Journal of Financial and Quantitative Analysis, 1995, 30(4):519-539 [15] Musiela M, Rutkowski M. Martingale Methods in Financial Modelling. Second Edition. Berlin:SpringerVerlag, 2005 [16] Páles, Z. Characterization of segment and convexity preserving maps. 2012. https://arxiv.org/abs/1212.1268 [17] Pliska S R. Introduction to Mathematical Finance:Discrete Time Models. Wiley, 1997 [18] Rockafellar R T. Convex Analysis. Princeton University Press, 1970 [19] Vecer J. Stochastic Finance. A Numeraire Approach. CRC Pressm, 2011 [20] Whitney H. The Mathematics of Physical Quantities:Part I:Mathematical Models for Measurement. The American Mathematical Monthly, 1968, 75(2):115-138 |