[1] Ahn J, Yoon C. Global well-posedness and stability of constant equilibria in parabolic-elliptic Chemotaxis systems without gradient sensing[J]. Nonlinearity, 2019, 32:1327-1351 [2] Keller E F, Segel L A. Model for chemotaxis[J]. J Theoret Biol, 1971, 30:225-234 [3] Fu X, Huang L H, Liu C, et al. Stripe formation in bacterial systems with density-suppressed motility[J]. Phys Rev Lett, 2012, 108:198102 [4] Liu C L, Fu X F, Liu L Z, et al. Sequential establishment of stripe patterns in an expanding cell population[J]. Science, 2011, 334:238 [5] Jin H Y, Kim Y J, Wang Z A. Boundedness, stabilization, and pattern formation driven by density-suppressed motility[J]. SIAM J Appl Math, 2018, 78:1632-1657 [6] Lv W, Yuan Q. Global existence for a class of chemotaxis systems with signal-dependent motility, indirect signal production and generalized logistic source[J]. Z Angew Math Phys, 2020, 71:53 [7] Wang J, Wang M. Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth[J]. J Math Phys, 2019, 60:011507 [8] Yoon C, Kim Y J. Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion[J]. Acta Appl Math, 2017, 149:101-123 [9] Tao Y S, Winkler M. Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system[J]. Math Mod Meth Appl Sci, 2017, 27:1645-1683 [10] Burger M, Laurençot Ph, Trescases A. Delayed blow-up for chemotaxis models with local sensing[J]. J London Math Soc, 2020, doi:10.1112/jlms.12420 [11] Fujie K, Jiang J. Global existence for a kinetic model of pattern formation with density-suppressed motilities[J]. J Differential Equations, 2020, 269:5338-5778 [12] Fujie K, Jiang J. Comparison methods for a Keller-Segel model of pattern formations with signal-dependent motilities[J]. Calc Var Partial Differential Equations, 2021, 60:92 [13] Fujie K, Jiang J. Boundedness of Classical Solutions to a Degenerate Keller-Segel Type Model with Signal-dependent Motilities[J]. Acta Applicandae Mathematicae, 2021, 176:3 [14] Li H, Jiang J. Global Existence of Weak Solutions to a Signal-dependent Keller-Segel Model for Local Sensing Chemotaxis[J]. Nonlinear Analysis:Real World Applications, 2021, 61:103338 [15] Jin H Y, Wang Z A. Critical mass on the Keller-Segel system with signal-dependent motility[J]. Proc Amer Math Soc, 2020, 148:4855-4873 [16] Jin H Y, Wang Z A. The Keller-Segel system with logistic growth and signal-dependent motility[J]. Discrete Contin Dyn Syst Ser B, 2021, 26:3023-3041 [17] Jin H Y, Shi S J, Wang Z A. Boundedness and asymptotics of a reaction-diffusion system with density-dependent motility[J]. J Different Equ, 2020, 269:6758-6793 [18] Ma M, Peng R, Wang Z. Stationary and non-stationary patterns of the density-suppressed motility model[J]. Physica D, 2020, 402:132259 [19] Wang Z A. On the parabolic-elliptic Keller-Segel system with signal-dependent motilities:a paradigm for global boundedness[J]. Math Meth Appl Sci, 2021, 44:10881-10898 [20] Zheng J, Wang Z. Global Boundedness of the Fully Parabolic Keller-Segel System with Signal-Dependent Motilities[J]. Acta Appl Math, 2021, 171:25 [21] Nagai T, Senba T. Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis[J]. Adv Math Sci Appl, 1998, 8:145-156 [22] Winkler M. Global solutions in a fully parabolic chemotaxis system with singular sensitivity[J]. Math Methods Appl Sci, 2011, 34:176-190 [23] Stinner C, Winkler M. Global weak solutions in a chemotaxis system with large singular sensitivity[J]. Nonlinear Anal, 2011, 12:3727-3740 [24] Winkler M, Yokota T. Stabilization in the logarithmic Keller-Segel system[J]. Nonlinear Anal Theor Meth Appl, 2018, 170:123-141 [25] Fujie K, Senba T. Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity[J]. Nonlinearity, 2016, 29:2417-2450 [26] Fujie K, Senba T. A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system[J]. Nonlinearity, 2018, 31:1639-1672 [27] Lankeit L, Winkler M. A generalized solution concept for the Keller-Segel system with logarithmic sensitivity:global solvability for large nonradial data[J]. NoDEA Nonlinear Differential Equations Appl, 2017, 24:49 [28] Cao X. Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces[J]. Discrete Contin Dynam Syst Ser A, 2015, 35:1891-1904 [29] Winkler M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model[J]. J Different Equ, 2010, 248:2889-2905 [30] Alikakos N D. An application of the invariance principle to reaction-diffusion equations[J]. J Diff Equ, 1979, 33:201-225 [31] Black T. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity[J]. Discrete Contin Dyn Syst Ser S, 2020, 13:119-137 [32] Winkler M. Can simultaneous density-determined enhancement of diffusion and cross-diffusion foster boundedness in Keller-Segel type systems involving signal-dependent motilities?[J]. Nonlinearity, 2020, 33:6590-6623 |