[1] Barcilon V, Chen D P, Eisenberg R S, Jerome J. Qualitative properties of steady-state Poisson-Nernst-Planck systems:perturbation and simulation study. SIAM J Appl Math, 1997, 57:631-648 [2] Biler P, Dolbeault J. Long Time Behavior of Solutions to Nernst-Planck and Debye-Hückel Drift-Diffusion Systems. Annales Henri Poincaré, 2000, 1:461-472 [3] Biler P, Hebisch W, Nadzieja T. The Debye system:existence and large time behavior of solutions. Nonlinear Anal, 1994, 23:1189-1209 [4] Bazant M Z, Thornton K, Ajdari A. Diffuse-charge dynamics in electrochemical systems. Physical review E, 2004, 70:021,506 [5] Cesare P, Moriondo A, Vellani V, McNaughton P A. Ion channels gated by heat. Proc Natl Acad Sci USA, 1999, 96:7658-7663 [6] Deng C, Li C M. Endpoint bilinear estimates and applications to the two-dimensional Poisson-Nernst-Planck system. Nonlinearity, 2013, 26:2993-3009 [7] Duan R J, Ruan L Z, Zhu C J. Optimal decay rates to conservation laws with diffusion-type terms of regularity-gain and regularity-loss. Math Models Methods Appl Sci, 2012, 22:1250012 39 pp [8] Eisenberg R S. Computing the field in proteins and channels. J Membrane Biol, 1996, 150:1-25 [9] Eisenberg R S. From structure to function in open ionic channels. J Membrane Biol, 1999, 171:1-24 [10] Elad D, Gavish N. Finite domain effects in steady state solutions of Poisson-Nernst-Planck equations. SIAM J Appl Math, 2019, 79:1030-1050 [11] Eisenberg B, Liu W S. Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J Math Anal, 2007, 38:1932-1966 [12] Gajewski H. On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. Z Angew Math Mech, 1985, 65:101-108 [13] Gagneux G, Millet O. A survey on properties of Nernst-Planck-Poisson system. Application to ionic transport in porous media. Appl Math Model, 2016, 40:846-858 [14] Guo Y, Wang Y J. Decay of dissipative equations and negative Sobolev spaces. Commun Part Diff Equ, 2012, 37:2165-2208 [15] Hsieh C Y. Global existence of solutions for the Poisson-Nernst-Planck system with steric effects. Nonlinear Anal Real World Appl, 2019, 50:34-54 [16] Hsieh C Y, Lin T C. Exponential decay estimates for the stability of boundary layer solutions to poisson-nernst-planck systems:One spatial dimension case. SIAM J Appl Math, 2015, 47:3442-3465 [17] Hsieh C Y, Lin T C, Liu C, Liu P. Global existence of the non-isothermal Poisson-Nernst-Planck-Fourier system. J Differential Equations, 2020, 269:7287-7310 [18] Jerome J W. Analysis of charge transport. A mathematical study of semiconductor devices. Berlin:Springer-Verlag, 1996 [19] Jordan P C, Bacquet R J, McCammon J A, Tran P. How electrolyte shielding influences the electrical potential in transmembrane ion channels. Biophysical Journal, 1989, 55:1041-1052 [20] Ji L J, Liu P, Xu Z L, Zhou S G. Asymptotic analysis on dielectric boundary effects of modified Poisson-Nernst-Planck equations. SIAM J Appl Math, 2018, 78:1802-1822 [21] Jiang N, Luo Y L, Zhang X. Long time stability of admissible equilibria in Poisson-Nernst-Planck-Fourier system. arXiv:1910.04094 [22] Liu W S. Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J Appl Math, 2005, 65:754-766 [23] Lin T C, Eisenberg B. A new approach to the lennard-jones potential and a new model:Pnp-steric equations. Commun Math Sci, 2014, 12:149-173 [24] Lin T C, Eisenberg B. Multiple solutions of steady-state Poisson-Nernst-Planck equations with steric effects. Nonlinearity, 2015, 28:2053-2080 [25] Liu P, Wu S, Liu C. Non-isothermal electrokinetics:energetic variational approach. Commun Math Sci, 2018, 16:1451-1463 [26] Liu W S, Xu H G. A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow. J Differential Equations, 2015, 258:1192-1228 [27] Mock M S. An initial value problem from semiconductor device theory. SIAM J Math Anal, 1974, 5:597-612 [28] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20:67-104 [29] Markowich P A, Ringhofer C A, Schmeiser C. Semiconductor equations. Vienna:Springer-Verlag, 1990 [30] Nirenberg L. On elliptic partial differential equations. Ann Scuola Norm Sup Pisa Cl Sci, 1959, 13:115-162 [31] Nonner W, Chen D P, Eisenberg B. Progress and prospects in permeation. J Gen Physiol, 1999, 113:773-782 [32] Ogawa T, Shimizu S. The drift-diffusion system in two-dimensional critical Hardy space. J Funct Anal, 2008, 255:1107-1138 [33] Park J H, Jerome J W. Qualitative properties of steady-state Poisson-Nernst-Planck systems:Mathematical study. SIAM J Appl Math, 1997, 57:609-630 [34] Promislow K, Stockie J M. Adiabatic relaxation of convective-diffusive gas transport in a porous fuel cell electrode. SIAM J Appl Math, 2001, 62:180-205 [35] Reubish D S, Emerling D E, DeFalco J, Steiger D, Victoria C L, Vincent F. Functional assessment of temperature-gated ion-channel activity using a real-time PCR machine. BioTechniques, 2009, 47:iii-ix. PMID:19852757 [36] Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series. No 30. Princeton, NJ:Princeton University Press, 1970 [37] Sohr H. The Navier-Stokes equations. Birkhäuser Advanced Texts:Basler Lehrbücher. Basel:Birkhäuser Verlag, 2001 [38] Song Z L, Cao X L, Huang H X. Electroneutral models for a multidimensional dynamic Poisson-Nernst-Planck system. Phys Rev E, 2018, 98:032404 [39] Schoch R B, Han J, Renaud P. Transport phenomena in nanofluidics. Rev Mod Phys, 2008, 80:839 [40] Schuss Z, Nadler B, Eisenberg R S. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Phys Rev E, 2001, 64:036116 [41] Wu Y S, Tan Z. Asymptotic behavior of the Stokes approximation equations for compressible flows in R3. Acta Mathematica Scientia, 2015, 35B(3):746-760 [42] Zhang Y H, Wu G C. Global existence and asymptotic behavior for the 3D compressible non-isentropic Euler equations with damping. Acta Mathematica Scientia, 2014, 34B(2):424-434 |