[1] Bautista O, Sánchez S, Arcos J C, Méndez F. Lubrication theory for electro-osmotic flow in a slit microchannel with the Phan-Thien and Tanner model. J Fluid Mech, 2013, 722:496-532 [2] Bird R B, Armstrong R C, Hassager O. Dynamics of Polymeric Liquids. Volume 1. New York:Wiley, 1977 [3] Chen Y H, Luo W, Yao Z A. Blow up and global existence for the periodic Phan-Thein-Tanner model. J Differential Equations, 2019, 267:6758-6782 [4] Chen Y H, Luo W, Zhai X P. Global well-posedness for the Phan-Thein-Tanner model in critical Besov spaceswithout damping. J Math Phys, 2019, 60:061503 [5] Duan R J, Ukai S, Yang T, Zhao H J. Optimal convergence rate for compressible Navier-Stokes equations with potential force. Math Models Methods Appl Sci, 2007, 17:737-758 [6] Fang D Y, Zi R Z. Global solutions to the Oldroyd-B model with a class of large initial data. SIAM J Math Anal, 2016, 48:1054-1084 [7] Fang D Y, Zi R Z. Strong solutions of 3D compressible Oldroyd-B fluids. Math Methods Appl Sci, 2013, 36:1423-1439 [8] Fang D Y, Zi R Z. Incompressible limit of Oldroyd-B fluids in the whole space. J Differential Equations, 2014, 256:2559-2602 [9] Garduño I E, Tamaddon-Jahromi H R, Walters K, Webster M F. The interpretation of a long-standing rheological flow problem using computational rheology and a PTT constitutive model. J Non-Newton Fluid Mech, 2016, 233:27-36 [10] Guillopé C, Saut J C. Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal, 1990, 15:849-869 [11] Guillopé C, Saut J C. Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél Math Anal Numér, 190, 24:369-401 [12] Guo Y, Wang Y J. Decay of dissipative equations and negative Sobolev spaces. Comm Partial Differential Equations, 20112, 37:2165-2208 [13] Hu X P, Wang D. Local strong solution to the compressible viscoelastic flow with large data. J Differential Equations, 2010, 249:1179-1198 [14] Hu X P, Wu G C. Global existence and optimal decay rates for three-dimensionalcompressible viscoelastic flows. SIAM J Math Anal, 2013, 45:2815-2833 [15] Ju N. Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space. Comm Math Phys, 2004, 251:365-376 [16] Lei Z. Global existence of classical solutions for some Oldroyd-B model via the incompressible limit. Chin Ann Math, 2006, 27B:565-580 [17] Lei Z, Liu C, Zhou Y. Global solutions for incompressible viscoelastic fluids. Arch Ration Mech Anal, 2008, 188:371-398 [18] Li Y, Wei R Y, Yao Z A. Optimal decay rates for the compressible viscoelastic flows. J Math Phys, 2016, 57:111506 [19] Lin F H, Liu C, Zhang P. On hydrodynamics of viscoelastic fluids. Comm Pure Appl Math, 2005, 58:1437-1471 [20] Matsumura A. An Energy Method for the Equations of Motion of Compressible Viscous and Heat-conductive Fluids. University of Wisconsin-Madison MRC Technical Summary Report, 1986, 2194:1-16 [21] Matsumura A, Nishida T. The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc Japan Acad Ser A, 1979, 55:337-342 [22] Matsumura A, Nishida T. The initial value problems for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20:67-104 [23] Molinet L, Talhouk R. On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law. NoDEA Nonlinear Differential Equations Appl, 2004, 11:349-359 [24] Nirenberg L. On elliptic partial differential equations. Ann Scuola Norm Sup Pisa, 1959, 13:115-162 [25] Oldroyd J G. Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc Roy Soc London Ser A, 1958, 245:278-297 [26] Oliveira P J, Pinho F T. Analytical solution for fully developed channel and pipe flow of Phan-Thien-Tanner fluids. J Fluid Mech, 1999, 387:271-280 [27] Ponce G. Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal, 1985, 9:339-418 [28] Qian J Z, Zhang Z F. Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch Ration Mech Anal, 2010, 198:835-868 [29] Schonbek M E, Wiegner M. On the decay of higher-order norms of the solutions of Navier-Stokes equations. Proc Roy Soc Edinburgh Sect A, 1996, 126:677-685 [30] Sohinger V, Strain R M. The Boltzmann equation, Besov spaces, and optimal time decay rates in Rxn. Advances in Mathematics, 2014, 261:274-332 [31] Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970 [32] Strain R M, Guo Y. Almost exponential decay near Maxwellian. Comm Partial Differential Equations, 2006, 31:417-429 [33] Tan Z, Wang Y J. On hyperbolic-dissipative systems of composite type. J Differential Equations, 2016, 260:1091-1125 [34] Tan Z, Wang Y J, Wang Y. Decay estimates of solutions to the compressible Euler-Maxwell system in R3. J Differential Equations, 2014, 257:2846-2873 [35] Tan Z, Wu W P, Zhou J F. Global existence and decay estimate of solutions to magneto-micropolar fluid equations. J Differential Equations, 2019, 266:4137-4169 [36] Wang Y J. Decay of the Navier-Stokes-Poisson equations. J Differential Equations, 2012, 253:273-297 [37] Wei R Y, Li Y, Yao Z A. Decay of the compressible viscoelastic flows. Commun Pure Appl Anal, 2016, 15:1603-1624 [38] Zhang T, Fang D. Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical Lp framework. SIAM J Math Anal, 2012, 44:2266-2288 [39] Zi R Z. Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter. Discrete Contin Dyn Syst Ser A, 2017, 37:6437-6470 [40] Zhou Z S, Zhu C J, Zi R Z. Global well-posedness and decay rates for the three dimensional compressible Oldroyd-B model. J Differential Equations, 2018, 265:1259-1278 [41] Zhu Y. Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism. J Funct Anal, 2018, 274:2039-2060 |