[1] Nishida T. Global solution for an initial boundary value problem of a quasilinear hyperbolic system. Proc Jap Acad, 1968, 44(7):642-646 [2] Bakhvalov N S. The existence in the large of a regular solution of a quasilinear hyperbolic system. Ussr Comp Math Math Phys, 1970, 10:969-980 [3] Diperna R J. Global solutions to a class of nonlinear hyperbolic systems of equations. Comm Pure Appl Math, 1973, 26:1-28 [4] Diperna R J. Existence in the large for quasilinear hyperbolic conservation laws. Arch Ration Mech Anal, 1973, 52(3):244-257 [5] Ding S S, Chang T, Wang C H, et al. A study of the global solutions for quasi-linear hyperbolic systems of conservation laws. Sci China Ser A, 1973, 16(3):317-335 [6] Nishida T, Smoller J. Solutions in the large for some nonlinear hyperbolic conservation laws. Comm Pure Appl Math, 1973, 26(2):183-200 [7] Frid H. Periodic solutions of conservation laws constructed through Glimm scheme. Trans Amer Math Soc, 2001, 353:4529-4544 [8] Wang Z, Zhang Q. Periodic solutions to p-system constructed through Glimm scheme. J Math Anal Appl, 2016, 435(2):1088-1098 [9] Smoller J, Temple B. Global solutions of the relativistic Euler equations. Commun Math Phys, 1993, 156(1):67-99 [10] Chen J. Conservation laws for relativistic fluid dynamics. Arch Rational Mech Anal, 1997, 139(4):377-398 [11] Li Y, Feng D, Wang Z. Global entropy solutions to the relativistic Euler equations for a class of large initial data. Z Angew Math Phy, 2005, 56(2):239-253 [12] Makino T, Ukai S. Local smooth solutions of the relativistic Euler equation. J Math Kyoto Univ, 1995, 3:365-375 [13] Ruan L, Zhu C. Existence of global smooth solution to the relativistic Euler equations. Nonlinear Anal, 2005, 60(6):993-1001 [14] Hsu C H, Lin S S, Makino T. On the relativistic Euler equation. Meth Appl Anal, 2001, 8(1):159-208 [15] Hsu C H, Makino T. Spherically symmetric solutions to the compressible Euler equation with an asymptotic γ-law. Japan J Indust Appl Math, 2003, 20(1):1-15 [16] Geng Y. Steady state solutions of relativistic Euler equations with spherical symmetry. Acta Mathematica Scientia, 2014, 34A(4):841-850 [17] Frid H, Perepelitsa M. Spatially periodic solutions in relativistic isentropic gas dynamics. Commun Math Phys, 2004, 250(2):335-370 [18] Chen G Q, Li Y. Relativistic Euler equations for isentropic fluids:stability of Riemann solutions with large oscillation. Z Angew Math Phys, 2004, 55(6):903-926 [19] Min L, Ukai S. Nonrelativistic global limits of weak solutions of the relativistic Euler equation. J Math Kyoto Univ, 1998, 38:525-537 [20] Li Y, Geng Y. Non-relativistic global limits of entropy solutions to the isentropic relativistic Euler equations. Z Angew Math Phy, 2006, 57(6):960-983 [21] Li Y, Wang L. Global stability of solutions with discontinuous initial data containing vacuum states for the relativistic Euler solutions. Chin Ann Math, 2005, 26(4):491-510 [22] Li Y, Wang A. Global entropy solutions of the Cauchy problem for nonhomogeneous relativistic Euler system. Chin Ann Math, 2006, 27(5):473-494 [23] Kunik M, Qamar S, Warnecke G. Second-order accurate kinetic schemes for the ultra-relativistic Euler equations. J Comput Phys, 2003, 192:695-726 [24] Safronov A V. Kinetic schemes for the gas dynamics equations. Vychisl Metody Programm, 2009:62-74 [25] Poupaud F, Rascle M, Vila J P. Global solutions to the isothermal Euler-Poisson system with arbitrarily large data. J Diff Eqs, 1995, 123(1):93-121 [26] Dafermos C M. Hyperbolic Conservation Laws in Continuum Physics. Berlin:Springer-Verlag, 2005 [27] Smoller J. Shock Waves and Reaction-Diffusion Equations. New York:Springer-Verlag, 1994 [28] Wang D, Wang Z. Large BV solutions to the compressible isothermal Euler-Poisson equations with spherical symmetry. Nonlinearity, 2006, 19(8):1985-2004 |