[1] Aubin J P. Un théorème de compacité. (French) C R Acad Sci Paris, 1963, 256:5042-5044 [2] Simon J. Compact sets in the space Lp(0, T; B). Ann Mat Pura Appl, 1987, 146(4):65-96 [3] Evans L C. Partial Differential Equations. AMS, 1998 [4] Novotný A, Straškraba I. Introduction to the mathematical theory of compressible flow. Oxford Lecture series in Mathematics and its Applications, 27. Oxford:Oxford University Press. 2004.xx+506 pp. ISBN:0-19-853084-6 [5] Feireisl E. Dynamics of Viscous Compressible Fluids. Oxford:Oxford University Press, 2004 [6] Jüngel A. Global weak solutions to compressible Navier-Stokes equations for quantum fluids. SIAM J Math Anal, 2010, 42(3):1025-1045 [7] Nirenberg L. On elliptic partial differential equations. Ann Scuola Norm Sup Pisa, 1959, 13(3):115-162 [8] Feireisl E, Novotný A. Singular Limits in Thermodynamics of Viscous Fluids//Adv Math Fuld Mech. Basel:Birkhäuser Verlag, 2009 [9] Feireisl F, Novotný A, Petzeltová H. On the existence of globally defined weak solutions to the Navier-Stokes equations. J Math Fuld Mech, 2001, 3:358-392 [10] Bresch D, Dejardins B, Lin C K. On some compressible fluid models:Korteweg, lubrication, and shallow water systems. Comm Partial Differential Equations, 2003, 28(3/4):843-868 [11] Chandrasekhar S. Introduction to the Stellar Structure. Chicago:University of Chicago Press, 1939 [12] Vasseur A, Yu C. Global weak solutions to compressible quantum Navier-Stokes equations with damping. SIAM J Math Anal, 2016, 48(2):1489-1511 [13] Auchmuty G. The golbal branching of rotating stars. Arch Rat Mech Anal, 1991, 114:179-194 [14] Luo T, Smoller J. Existence and Non-linear Stability of Rotating Star Solutions of the Compressible EulerPoisson Equations. Arch Rational Mech Anal, 2009, 191:447-496 [15] Auchmuty G, Beals R. Varistional solutions of some nolinear free boundary problems. Arch Rat Mech Anal, 1971, 43:255-271 [16] Caffarelli L, Friedman A. The shaoe of axisymmetric totating fluid. J Funct Anal, 1980, 694:109-142 [17] Friedman A, Turkington B. Existence and dimensions of a rotating white dwarf. J Differ Equ, 1981, 42:414-437 [18] Ye Y L. Global weak solutions to 3D compressible Navier-Stokes-Poisson equations with density-dependent viscosity. Journal of Mathematical Analysis and Applications, 2015, 247(1):203-224 [19] Li Y Y. On uniformly rotating stars. Arch Rat Mech Anal, 1991, 115(4):367-393 [20] Luo T, Smooler J. Rotating fluids with self-gravitation in bounded domains. Arch Rat Mech Anal, 2004, 173(3):345-377 [21] Wang F C, Dou C S, Jiu Q S. Global existence of weak solutions to 3D compressible primitive equations with density-dependent viscosity. J Math Phys, 2020, 61:021507 [22] Li H, Li Y C. Global existence weak solutions for quantum MHD equations. arXiv:1805.02390v1[math.AP] 7 May 2018 [23] Lions P -L. Mathematical topics in fluid mechanics. Vol 2. Compressible models//Oxford Science Publications. Oxford Lecture Series in Mathematics and it's Applications, 10. New York:The Clarendon Press, Oxford University Press, 1998 [24] Mcmcann R. Stable rotating binary stars and fluid in a tube. Houston J Math, 2006, 32(2):603-631 [25] Friedman A, Turkington B. Asymptotic estimates for an axi-symmetric rotating fluid. J Func Anal, 1980, 37:136-163 |