[1] |
Bendikov A, Grigor'yan A, Pittet C, et al. Isotropic Markov semigroups on ultra-metric spaces. Russian Mathematical Surveys, 2014, 69(4):589-680
|
[2] |
Bendikov A, Grigor'yan A, Hu E, et al. Heat kernels and non-local Dirichlet forms on ultrametric spaces. Ann Scuola Norm Sup Pisa, e-prints, 2019
|
[3] |
Carlen E A, Kusuoka S, Stroock D W, Upper bounds for symmetric Markov transition functions. Ann Inst H Poincaré Probab Statist, 1987, 23:245-287
|
[4] |
Chen Z Q, Kim P, Kumagai T, Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math Ann, 2008, 342:833-883
|
[5] |
Davies E B. Explicit constants for Gaussian upper bounds on heat kernels. Amer J Math, 1987, 109:319-333
|
[6] |
Fukushima M, Oshima Y, Takeda M. Dirichlet Forms and Symmetric Markov Processes. vol. 19 of de Gruyter Studies in Mathematics. Berlin:Walter de Gruyter & Co, 2011
|
[7] |
Grigor'yan A, Hu E, Hu J. Lower estimates of heat kernels for non-local Dirichlet forms on metric measure spaces. J Funct Anal, 2017, 272:3311-3346
|
[8] |
Grigor'yan A, Hu E, Hu J. Two-sided estimates of heat kernels of jump type Dirichlet forms. Adv Math, 2018, 330:433-515
|
[9] |
Grigor'yan A, Hu J, Lau K S. Comparison inequalities for heat semigroups and heat kernels on metric measure spaces. J Funct Anal, 2010, 259:2613-2641
|
[10] |
Grigor'yan A, Hu J, Lau K S. Estimates of heat kernels for non-local regular Dirichlet forms. Trans Amer Math Soc, 2014, 366:6397-6441
|
[11] |
Hu E. Lower inequalities of heat semigroups by using parabolic maximum principle. Acta Math Sci, 2012, 32B(4):1349-1364
|
[12] |
Hu J, Li X. The Davies method revisited for heat kernel upper bounds of regular Dirichlet forms on metric measure spaces. Forum Math, 2018, 30:1129-1155
|
[13] |
Murugan M, Saloff-Coste L. Davies' method for anomalous diffusions. Proc Amer Math Soc, 2017, 145:1793-1804
|
[14] |
Yang M. Hent kernel estimates on Julia sets. Acta Math Sci, 2017, 37B(5):1399-1414
|