[1] Ambrosetti A, Ruiz D. Multiple bound states for the Schrödinger-Poisson problem. Commun Contemp Math, 2008, 10:391-404 [2] Applebaum D. Lévy processes-from probability to finance quantum groups. Notices Amer Math Soc, 2004, 51:1336-1347 [3] Azzollini A, Pomponio A. Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J Math Anal Appl, 2008, 345:90-108 [4] Benci V, Fortunato D. An eigenvalue problem for the Schrödinger-Maxwell equations. Topol Methods Nonlinear Anal, 1998, 11:283-293 [5] Biler P, Karch G, Woyczyński W A. Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws. Ann Inst H Poincaré Anal Non Linéaire, 2001, 18:613-637 [6] Caffarelli L, Roquejoffre J M, Savin O. Non-local minimal surfaces. Comm Pure Appl Math, 2010, 63:1111-1144 [7] Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differential Equations, 2007, 32:1245-1260 [8] Caffarelli L, Valdinoci E. Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc Var Partial Differential Equations, 2011, 41:203-240 [9] Chang X, Wang Z. Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity, 2013, 26:479-494 [10] Cont R, Tankov P. Financial Modelling with Jump Processes. London/Boca Raton:Chapman & Hall/CRC Press, 2004 [11] Cotsiolis A, Tavoularis N K. Best constants for Sobolev inequalities for higher order fractional derivatives. J Math Anal Appl, 2004, 295:225-236 [12] D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc Roy Soc Edinburgh Sect A, 2004, 134:893-906 [13] D'Aprile T, Mugnai D. Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv Nonlinear Stud, 2004, 4:307-322 [14] Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136:521-573 [15] Dipierro S, Medina M, Valdinoci E. Fractional elliptic problems with critical growth in the whole of Rn. Pisa:Edizioni della Normale, 2017 [16] Dipierro S, Palatucci G, Valdinoci E. Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche (Catania), 2013, 68:201-216 [17] Duvaut G, Lions J L. Inequalities in Mechanics and Physics. Berlin:Springer-Verlag, 1976 [18] Felmer P, Quaas A, Tan J. Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2012, 142:1237-1262 [19] He X, Zou W. Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth. J Math Phys, 2012, 53:023702 [20] Huang L, Rocha E, Chen J. Two positive solutions of a class of Schrödinger-Poisson system with indefinite nonlinearity. J Differential Equations, 2013, 255:2463-2483 [21] Jiang Y, Zhou H. Schrödinger-Poisson system with steep potential well. J Differential Equations, 2011, 251:582-608 [22] Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys Lett A, 2000, 268:298-305 [23] Laskin N. Fractional Schrödinger equation. Phys Rev E, 2002, 66:56-108 [24] Lions P L. Solutions of Hartree-Fock equations for Coulomb systems. Comm Math Phys, 1984, 109:33-97 [25] Liu Z, Zhang J. Multiplicity and concentration of positive solutions for the fractional Schrödinger-Poisson systems with critical growth. ESAIM Control Optim Calc Var, 2017, 23:1515-1542 [26] Milakis E, Silvestre L. Regularity for the nonlinear Signorini problem. Adv Math, 2008, 217:1301-1312 [27] Murcia E G, Siciliano G. Positive semiclassical states for a fractional Schrödinger-Poisson system. Differential Integral Equations, 2017, 30:231-258 [28] Ruiz D. The Schrödinger-Poisson equation under the effect of a nonlinear local term. J Funct Anal, 2006, 237:655-674 [29] Secchi S. Ground state solutions for nonlinear fractional Schrödinger equations in RN. J Math Phys, 2013, 54:031501 |