[1] Das A, Sen A, Kaw P. Nonlinear saturated states of the magnetic-curvature-driven Rayleigh-Taylor instability in three dimensions. Phys Plasma, 2005, 12:022302 [2] Guo B, Han Y. Existence and uniqueness of global solution of the Hasegawa-Mima equation. J Math Phys, 2004, 45:1638-1647 [3] Hasegawa A, Mima K. Stationary spectrum of strong turbulence in magnetized plasma. Phys Rev Lett, 1977, 39:205-208 [4] Hasegawa A, Mima K. Pesudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys Fluids, 1978, 21:87-92 [5] Hasegawa A, Wakatani M. Plasma edge turbulence. Phys Rev Lett, 1983, 50:682-686 [6] Hasegawa A, Wakatani M. A collisional drift wave description of plasma edge turbulence. Phys Fluids, 1984, 27:611-618 [7] Kato T. Nonstationary flows of viscous and ideal fluids in R3. J Funct Anal, 1972, 9:296-305 [8] Ladyzhenskaya O A, Solonnikov V A, Ural'ceva N N. Linear and quasi-linear equations of parabolic type. Providence:Amer Math Soc, 1968 [9] Lions J L, Magenes E. Non-Homogeneous Boundary Value Problems and Applications, I. Berlin:SpringerVerlag, 1972 [10] Lions J L. Quelques methodes de resolution des problemes aux limits non lineeaires. Paris:Dunod, 1969 [11] Kondo A, Tani A. Initial boundary value problem for model equations of resistive drift wave turbulence. SIAM J Math Anal, 2011, 43(2):925-943 [12] Zhang R, Guo B. Global attractor for Hasegawa-Mima equation. Appl Math Mech (Engl Ed), 2006, 27:567-574 [13] Zhang R, Guo B. Dynamical behavior for the three-dimensional generalized Hasegawa-Mima equations. J Math Phys, 2007, 27:012703 |