[1] Gilman A, Bear J. The influence of free convection on soil salinization in arid regions. Transport Porous MED, 1996, 23:275-301 [2] Pieters G J M, Van Duijn C J. Transient growth in linearly stable gravity-driven flow in porous media. Eur J Mech B/Fluids, 2006, 25:83-94 [3] Payne L E, Straughan B. A naturally efficient numerical technique for porous convection stability with non-trivial boundary conditions. Int J Num Anal Meth Geomech, 2000, 24(10):815-836 [4] Nield D, Bejan A D. Convection in Porous Media. 5th ed. New York:Springer, 2017 [5] Capone F, Rionero S. Nonlinear stability of a convective motion in a porous layer driven by a horizontally periodic temperature gradient. Continuum Mech Thermodyn, 2003, 15:529-538 [6] Lombardo S, Mulone G. Necessary and sufficient conditions for global nonlinear stability for rotating double-diffusive convection in a porous medium. Continuum Mech Thermodyn, 2002, 14:527-540 [7] Lombardo S, Mulone G. Necessary and sufficient stability conditions via the eigenvalues-eigenvectors method:an application to the magnetic Bénard problem. Nonlinear Anal, 2005, 63(5/7):e2091-e2101 [8] Payne L E, Straughan B. Unconditional nonlinear stability in temperature-dependent viscosity flow in a porous medium. Stud Appl Math, 2000, 105:59-81 [9] Straughan B. The Energy Method, Stability, and Nonlinear Convection. 2nd ed. New York:Springer, 2004 [10] Mulone G, Rionero S. The rotating Bénard problem:new stability results for any Prandtl and Taylor numbers. Continuum Mech Thermodyn, 1997, 9:347-363 [11] Joseph D D. Global stability of the conduction-diffusion solution. Arch Rational Mech Anal, 1970, 36: 285-292 [12] Lombardo S, Mulone G, Straughan B. Stability in the Bénard problem for a double-diffusive mixture in a porous medium. Math Meth Appl Sci, 2001, 24:1229-1246 [13] Galdi G P, Padula M. A new approach to energy theory in the stability of fluid motion. Arch Rational Mech Anal, 1990, 110:187-286 [14] Xu L X, Lan W L. On the nonlinear stability of parallel shear flow in the presence of a coplanar magnetic field. Nonlinear Anal, 2014, 95:93-98 [15] Mulone G, Straughan B. An operative method to obtain necessary and sufficient stability conditions for double diffusive convection in porous media. Z Angew Math Mech, 2006, 86(7):507-520 [16] Schmitt B J, Von Wahl W. Decomposition of solenoidal fields into poloidal fields, toroidal fields and mean flow. Applications to the Boussinesq equations//Heywood J G, Masuda K, Rautmann R, Solonnikov S A, eds. The Navier-Stokes Equations II-Theory and Numerical Methods. Lecture Notes in Mathematics 1530, Berlin, Heidelberg, New York:Springer, 1992:291-305 [17] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Oxford:Oxford University Press, 1961 [18] Yang Z X, Zhang G B. Global stability of traveling wavefronts for nonlocal rection-diffusion equations with time delay. Acta Math Sci, 2018, 38B (1):291-304 [19] He L, Tang S J, Wang T. Stability of viscous shock waves for the one-dimensional compressible NavierStokes equations with density-dependent viscosity. Acta Math Sci, 2016, 36B (1):36-50 |