[1] Bahri A. Critical Point at Infinity in Some Variational Problem. Pitman Res Notes Math, Ser 182. Harlow:Longman Sci Tech, 1989
[2] Bahri A, Coron J M. The scalar curvature problem on the standard three dimensional spheres. J Funct Anal, 1991, 95:106-172
[3] Bahri A, Li Y Y, Rey O. On a variational problem with lack of compactness:the topological effect of the critical points at infinity. Cal Var Partial Differential Equations, 1995, 3:67-93
[4] Ben Ayed M, Chen Y, Chtioui H, Hammami M. On the prescribed scalar curvature problem on 4-manifolds. Duke Math J, 1996, 84:633-677
[5] Ben Ayed M, Chtioui H, Hammami M. A morse lemma at infinity for Yamabe type problems on domains. Ann I H Poincaré, 2003, 20(4):543-577
[6] Ben Ayed M, Hammami M. On a variational problem involving critical sobolev growth in dimension four. Adv Differ Equ, 2004, 9(3/4):415-446
[7] Cao D, Peng S. The asymptotic behavior of the ground state solutions for Hénon equation. J Math Anal Appl, 2003, 278:1-17
[8] Djadli Z, Malchiodi A, Ould Ahmadou M. Prescribing Scalar and boundary mean curvature on the three dimensional half sphere. J Geom Anal, 2003, 13:255-289
[9] Gilbarg D, Trudinger N S. Elliptic Partial Differential Equation of Second Order. Springer-Verlag, 1977
[10] Ghoudi R. On a variational problem involving critical sobolev growth in dimension three. Nonlinear Differ Equ Appl, 2016, 23(1):1-18
[11] Li Y Y. Prescribing scalar curvature on Sn and related topics, part I. J Differ Equ, 1995, 120:319-410
[12] Li Y Y. Prescribing scalar curvature on Sn and related problems, part II:existence and compactness. Comm Pure Appl Math, 1996, 49:541-597
[13] Lions P L. The concentration-compactness principle in the calculus of variations. The Limit Case, Part 1. Rev Mat Iberoamericana, 1985, 1(1):145-201
[14] Long W, Yang J. Existence and asymptotic behavior of solutions for Hénon type equations. Opuscula Mathematica, 2011, 31(3):411-424
[15] Milnor J. Morse Theory. Princeton University Press, 1969
[16] Pohozaev S. Eigenfunctions of the equation △u+λf(u)=0. Soviet Math Dokl, 1965, 6:1408-1411
[17] Rey O. The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent. J Funct Anal, 1990, 89:1-52
[18] Rey O. The topological impact of critical points at infinity in a variational problem with lack of compactness:the dimension 3. Adv Differ Equ, 1999, 4:581-616
[19] Schoen R. Graduate Course in Toppic of Differential Geometry[Graduate Course]. Standford University and Courant Institute, 1988-1989
[20] Struwe M. A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math Z, 1984, 187:511-517 |