数学物理学报(英文版) ›› 2017, Vol. 37 ›› Issue (1): 139-173.doi: 10.1016/S0252-9602(16)30122-9

• 论文 • 上一篇    下一篇

SCALAR CURVATURE TYPE PROBLEM ON THE THREE DIMENSIONAL BOUNDED DOMAIN

Mohamed BEN AYED1, Habib FOURTI2   

  1. 1. Faculté des Sciences, Université de Sfax, Route Soukra, Sfax, Tunisie;
    2. Institut Préparatoire Aux Etudes d'Ingénieurs, Université de Sfax, Sfax, Tunisie
  • 收稿日期:2015-10-16 修回日期:2016-04-18 出版日期:2017-02-25 发布日期:2017-02-25
  • 通讯作者: Mohamed BEN AYED,E-mail:Mohamed.Benayed@fss.rnu.tn E-mail:Mohamed.Benayed@fss.rnu.tn
  • 作者简介:Habib FOURTI,E-mail:habib40@hotmail.fr

SCALAR CURVATURE TYPE PROBLEM ON THE THREE DIMENSIONAL BOUNDED DOMAIN

Mohamed BEN AYED1, Habib FOURTI2   

  1. 1. Faculté des Sciences, Université de Sfax, Route Soukra, Sfax, Tunisie;
    2. Institut Préparatoire Aux Etudes d'Ingénieurs, Université de Sfax, Sfax, Tunisie
  • Received:2015-10-16 Revised:2016-04-18 Online:2017-02-25 Published:2017-02-25
  • Contact: Mohamed BEN AYED,E-mail:Mohamed.Benayed@fss.rnu.tn E-mail:Mohamed.Benayed@fss.rnu.tn
  • About author:Habib FOURTI,E-mail:habib40@hotmail.fr

摘要:

In this paper we prove an existence result for the nonlinear elliptic problem:-△u=Ku5, u>0 in Ω, u=0 on ∂Ω, where Ω is a smooth bounded domain of R3 and K is a positive function in Ω. Our method relies on studying its corresponding subcritical approximation problem and then using a topological argument.

关键词: scalar-curvature, critical point, limiting Sobolev exponent, variational problems with lack of compactness, blow up analysis

Abstract:

In this paper we prove an existence result for the nonlinear elliptic problem:-△u=Ku5, u>0 in Ω, u=0 on ∂Ω, where Ω is a smooth bounded domain of R3 and K is a positive function in Ω. Our method relies on studying its corresponding subcritical approximation problem and then using a topological argument.

Key words: scalar-curvature, critical point, limiting Sobolev exponent, variational problems with lack of compactness, blow up analysis