[1] Ambrosetti A, Malchiodi A. Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics 104. Cambridge: Cambridge University Press, 2007
[2] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 349–381
[3] Bartolo P, Benci V, Fortunato D. Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal, 1983, 7: 981–1012
[4] Bartsch T. Infinitely many solutions of a symmetric Dirichlet problem. Nonlinear Anal, 1993, 20: 1205–1216
[5] Boucheche Z, Yacoub R, Chtioui H. On a bi-harmonic equation involving critical exponent: existence and multiplicity results. Acta Math Sci, 2011, 31B: 1213–1244
[6] Cerami G. An existence criterion for the critical points on unbounded manifolds. Istit Lombardo Accad Sci Lett Rend A, 1978, 112: 332–336
[7] Costa D G, Magalhäes C A. Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal, 1994, 23: 1401–1412
[8] Deng Y, Li Y. Regularity of the solutions for nonlinear biharmonic equations in RN. Acta Math Sci, 2009, 29B: 1469–1480
[9] Drábek P, ˆOtani M. Global bifurcation result for the p-biharmonic operator. Electron. J Differ Equ, 2001, (48): 19 (electronic)
[10] Edmunds D E, Lang J, Nekvinda A. On Lp(x) norms. R Soc Lond Proc Ser A Math Phys Eng Sci, 1999, 455: 219–225
[11] Edmunds D E, R´akosn´?k J. Sobolev embeddings with variable exponent. Studia Math, 2000, 143: 267–293
[12] El Amrouss A, Moradi F, Moussaoui M. Existence of solutions for fourth-order PDEs with variable exponentsns. Electron J Differ Equ, 2009, (153): 13 (electronic)
[13] Fan X L, Shen J S, Zhao D. Sobolev embedding theorems for spaces Wk, p(x)(). J Math Anal Appl, 2001, 262: 749–760
[14] Fan X L, Zhao D. On the spaces Lp(x)() and Wm, p(x)(). J Math Anal Appl, 2001, 263: 424–446
[15] Harjulehto P, Häst¨o P, Lˆe ´U V, Nuortio M. Overview of differential equations with non-standard growth. Nonlinear Anal, 2010, 72: 4551–4574
[16] Jeanjean L. Local conditions insuring bifurcation from the continuous spectrum. Math Z, 1999, 232: 651–664
[17] Jeanjean L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazertype problem set on RN. Proc Roy Soc Edinburgh Sect A, 1999, 129: 787–809
[18] Jeanjean L, Toland J F. Bounded Palais-Smale mountain-pass sequences. C R Acad Sci, Paris S´er I Math, 1998, 327: 23–28
[19] Kajikiya R. A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J Funct Anal, 2005, 225: 352–370
[20] Li G, Yang C. The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition. Nonlinear Anal, 2010, 72: 4602–4613
[21] Liu S, Squassina M. On the existence of solutions to a fourth-order quasilinear resonant problem. Abstr Appl Anal, 2002, 7: 125–133
[22] Liu Y, Wang Z. Biharmonic equations with asymptotically linear nonlinearities. Acta Math Sci, 2007, 27B: 549–560
[23] Liu Z L, Wang Z Q. On the Ambrosetti-Rabinowitz superlinear condition. Adv Nonlinear Stud, 2004, 4: 563–574
[24] Luan S, Mao A. Periodic solutions for a class of non-autonomous Hamiltonian systems. Nonlinear Anal, 2005, 61: 1413–1426
[25] Miyagaki O H, Souto M A S. Superlinear problems without Ambrosetti and Rabinowitz growth condition. J Differ Equ, 2008, 245: 3628–3638
[26] Ruzicka M. Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748. Berlin: Springer-Verlag, 2000
[27] Schechter M. A variation of the mountain pass lemma and applications. J London Math Soc. 1991, 44(2): 491–502
[28] Schechter M, Zou W M. Superlinear problems. Pacific J Math, 2004, 214: 145–160
[29] Willem M, Zou W M. On a Schr¨odinger equation with periodic potential and spectrum point zero. Indiana Univ Math J, 2003, 52: 109–132
[30] Zang A B, Fu Y. Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces. Nonlinear Anal, 2008, 69: 3629–3636
[31] Zhikov V V. Averaging of functionals of the calculus of variations and elasticity theory. Izv Akad Nauk SSSR Ser Mat, 1986, 50: 675–710 |