[1] Chen H, Wu S H. On existence of solutions for some hyperbolic-parabolic-type chemotaxis systems. IMA J Appl Math, 2007, 72(3):331-347
[2] Chen H, Wu S H. The free boundary problem in biological phenomena. J Partial Differ Equ, 2007, 20(2):155-168
[3] Chen H, Wu S H. Hyperbolic-parabolic chemotaxis system with nonlinear product terms. J Partial Differ Equ, 2008, 21(1):45-58
[4] Chen H, Wu S H. Nonlinear hyperbolic-parabolic system modeling some biological phenomena. J Partial Differ Equ, 2011, 24(1):1-14
[5] Chen H and Wu S H. The moving boundary problem in a chemotaxis model. Commun Pure Appl Anal, 2012, 11(2):735-746
[6] Chen H, Zhong X H. Norm behaviour of solutions to a parabolic-elliptic system modelling chemotaxis in a domain of R3. Math Methods Appl Sci, 2004, 27(9):991-1006
[7] Chen H, Zhong X H. Global existence and blow-up for the solutions to nonlinear parabolic-elliptic system modelling chemotaxis. IMA J Appl Math, 2005, 70(2):221-240
[8] Chen H, Zhong X H. Existence and stability of steady solutions to nonlinear parabolic-elliptic systems modelling chemotaxis. Math Nach, 2006, 279(13/14):1441-1447
[9] Diaz J I, Nagai T. Symmetrization in a parabolic-elliptic system related to chemotaxis. Adv Math Sci Appl, 1995, 5(2):659-680
[10] Friedman A. Free boundary problems in science and technology. Notices Amer Math Soc, 2000, 47(8):854-861
[11] Haraux A. Nonlinear Evolution Equations Global Behavior of Solutions. New York:Springer, 1981
[12] Hillen T. Hyperbolic models for chemosensitive movement. Math Models Methods Appl Sci, 2002, 12(7):1007-1034
[13] Hillen T, Painter K J. Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv Appl Math, 2001, 26(4):280-301
[14] Hillen T, Painter K J. A user's guide to PDE models for chemotaxis. J Math Biology, 2009, 58(1/2):183-217
[15] Horstmann D. From 1970 until present:the Keller-Segel model in chemotaxis and its consequences I. Jahresbericht der Deutschen Mathematiker Vereinigung, 2003, 105(3):103-165
[16] Horstmann D, Lucia M. Uniqueness and symmetry of equilibria in a chemotaxis model. Journal für die reine und Angewandte Mathematik, 2011, 2011(654):83-124
[17] Jäger W, Luckhaus S. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans Amer Math Soc, 1992, 329(2):819-824
[18] Raper K B. Dictyostelium discoideum, a new species of slime mold from decaying forest leaves. J Agricultural Research, 1935, 50(2):135-147
[19] Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. J Theoretical Biology, 1970, 26(3):399-415
[20] Levine H A, Sleeman B D. A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J Appl Math, 1997, 57(3):683-730
[21] Nagai T. Blow-up of radially symmetric solutions to a chemotaxis system. Adv Math Sci Appl, 1995, 5(2):581-601
[22] Schaeffer D G. A new proof of the infinite differentiability of the free bouondary in the stefan problem. J Differ Equ, 1976, 20(1):266-269
[23] Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton:Princeton University Press, 1970
[24] Sanba T, Suzuki T. Weak solutions to a parabolic-elliptic system of chemotaxis. J Funct Anal, 2002, 191(1):17-51
[25] Suzuki T. Free Energy and Self-Interacting Particles. Boston:Birkhäuser, 2005
[26] Taylor M E. Partial Differential Equations Ⅲ. New York:Springer, 2011
[27] Wu S H, Chen H, Li W X. The local and global existence of the solutions of hyperbolic-parabolic system modeling biological phenomena. Acta Math Sci, 2008, 28B(1):101-116
[28] Wu S H. A free boundary problem for a chemotaxis system. Acta Math Sin Chinese Series, 2010, 53(3):515-524
[29] Wu S H, Yue B. On existence of local solutions of a moving boundary problem modelling chemotaxis in 1-D. J Partial Differ Equ, 2014, 27(3):268-282
[30] Ye Q X. An Introduction to Reaction-Diffusion Equations. Beijing:Science Press, 2011
[31] Yang Y, Chen H, Liu W A. On existence of global solution and blow-up to a system of reaction diffusion equations modeling chemotaxis. SIAM J Math Anal, 2001, 33(4):763-785 |