[1] Hoff D. Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data. Trans Amer Math Soc, 1987, 303(1): 169–181
[2] Kazhikov A V, Shelukhin V V. Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. Prikl Mat Meh, 1977, 41: 282–291
[3] Serre D. Solutions faibles globales des ´equations de Navier-Stokes pour un fluide compressible. C R Acad Sci Paris S´er I Math, 1986, 303: 639–642
[4] Serre D. 1´équation monodimensionnelle d´un fluide visqueux, compressible et conducteur de chaleur. C R Acad Sci Paris S´er I Math, 1986, 303: 703–706
[5] Nash J. Le problème de Cauchy pour les équations diff´erentielles d´un fluide g´en´eral. Bull Soc Math France, 1962, 90: 487–497
[6] Serrin J. On the uniqueness of compressible fluid motion. Arch Rational Mech Anal, 1959, 3: 271–288
[7] Cho Y, Choe H J, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluid. J Math Pures Appl, 2004, 83: 243–275
[8] Cho Y, Kim H. On classical solutions of the compressible Navier-Stokes equations with nonnegative intial densities. Manuscript Math, 2006, 120: 91–129
[9] Cho Y, Kim H. Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J Differ Eqs, 2003, 190: 504–523
[10] Salvi R, Straskraba I. Global existence for viscous compressible fluids and their behavior as t ! 1. J Fac Sci Univ Tokyo Sect IA Math, 1993, 40: 17–51
[11] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20(1): 67–104
[12] Hoff D. Global solutions of the Navier-Stokes equations for multidimendional compressible flow with dis-constinuous initial data. J Differ Eqs, 1995, 120(1): 215–254
[13] Hoff D. Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations fo state and discontinuous initial data. Arch Rational Mech Anal, 1995, 132: 1–14
[14] Lions P L. Mathematical Topics in Fluid Mechanics. Vol 2. Compressible Models. New York: Oxford University Press, 1998
[15] Feiresl E, Novotny A, Petzeltov´a H. On the existence of globally defined weak solutions to the Navier-Stokes equations. J Math Fluid Mech, 2001, 3(4): 358–392
[16] Zhang T, Fang D Y. Compressible flows with a density-dependent viscosity coefficient. SIAM J Math Anal, 2010, 41(6): 2453–2488
[17] Zhang T. Global solutions of compressible barotropic Navier-Stokes equations with a density-dependent viscosity coefficient. J Math Phys, 2011, 52(4): 043510
[18] Huang X D, Li J, Xin Z P. Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Comm Pure Appl Math, 2012, 65(4): 549–585
[19] Deng X M, Zhang P X, Zhao J N. Global Well-posedness of Classical Solutions with Large Initial data and Vacuum to the Three-dimensional isentropic compressible Navier-Stokes equations. Preprint
[20] Beal J T, Kato T, Majda A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun Math Phys, 1984, 94: 61–66 |