[1] Ma T, Wang S H. Phase transition and separation for mixture of liquid he-3 and he-4//Horizons in World Phys, 264. Nova Publishers, 2009: 107–119
[2] Ma T, Wang S H. Phase Transition Dynamics in Nonlinear Sciences. New York: Springer, 2012
[3] Ma T. Theories and Methods for Partial Differential Equations. Beijing: Science Press, 2011 (in Chinese)
[4] Harten A V. On the validity of the Ginzburg-Landau equation. J Nonlinear Sci, 1991, 1: 397–422
[5] Levermore C V, Oliver M. The complex Ginzburg- Landau equation as a model problem//Dynamical Systems and Probabilistic Methods in Partial Differential Equations, Lectures in Applied Mathematics, 31. Amer Math Soc, 1996: 141–189
[6] Mielke A, Schneider G. Derivation and justification of complex Ginzbur-Landau equation as a modulation equation//Dynamical Systems and Probabilistic Methods in Partial Differential Equations. Lectures in Applied Mathematics, 31. Amer Math Soc, 1996: 191–216
[7] Mielke A, Schneider G. Attractors for modulation equation on unbounded domains, existence and com-parison. Nonlinearity, 1995, 8: 743-768
[8] Gao H J, Lin G G, Duan J Q. Asymptotics for the generalized two-dimensional Ginzburg-Landau equation. J Math Anal Appl, 2000, 247: 198-216
[9] Karachalios N I, Zographopoulos N B. Convergence towards attractors for a degenerate Ginzburg- Landau equation. Z Angew Math Phys, 2005, 56: 11–30
[10] Guo B L, Wang B X. Exponential attractors for the generalized Ginzburg-Landau equation. Acta Math-ematica Sinica, English Series, 2000, 16(3): 515–526
[11] Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Berlin: Springer, 1997
[12] Wen H Y, Ding S J. Vortex dynamics of the anisotropic Ginzburg-Landau equation. Acta Math Sci, 2010, 30B(1): 949–962
[13] Wang X, Gao F Q. Moderate deviations from hydrodynamic limit of a Ginzburg-Landau model. Acta Math Sci, 2006, 26B(4): 691–701
[14] Cahn J W, Hilliard J E. Free energy of a nonuniform system: interfacial energy. J Chem Phys, 1958, 28: 258–267
[15] Cholewa J W, Dlotko T. Global attractor of the Cahn-Hilliard system. Bull Austral Math Soc, 1994, 49: 277–292
[16] Dlotko T. Global attractor for the Cahn-Hilliard equation in H2 and H3. J Differ Eqn, 1994, 113: 381–393
[17] Li D, Zhong C K. Global attractor for the Cahn-Hilliard system with fast growing nonlinearity. J Differ Eqn, 1998, 149: 191–210
[18] Song L Y, Zhang Y D, Ma T. Global attractor of the Cahn-Hilliard equation in Hk spaces. J Math Anal Appl, 2009, 355: 53–62
[19] Ma T, Wang S H. Bifurcation Theory and Applications. World Sci Ser Nonlinear Sci Ser A Monogr Treatises, Vol 53. Singapore: World Scientific, 2005
[20] Ma T, Wang S H. Stability and Bifurcation of Nonlinear Evolution Equations. Beijing: Science Press, 2007 (in Chinese)
[21] Zhang Y D, Song L Y, Ma T. The existence of global attractors for 2D Navier-Stokes equations in Hk spaces. Acta Math Sinica, English Series, 2009, 25(1): 51–58
[22] Luo H. Global attractor of the extended Fisher-Kolmogorov equation in Hk spaces. Boundary Value Problems, 2011, 39: 1–10
[23] Zhang Y D, Li K T. Existence of global attractors for a nonlinear evolution equation in Sobolev space Hk. Acta Math Sci, 2009, 29B(5): 1165–1172
[24] Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl Math Sci, Vol 44. Springer-Verlag, 2006 |