[1] Chandrasekhar S. An Introduction to the Study of Stellar Structures. Chicago: University of Chicago Press, 1938
[2] Deng Y B, Liu T P, Yang T, Yao Z A. Solutions of Euler-Poisson equations for gaseous stars. Arch Ration Mech Anal, 2002, 164(3): 261--285
[3] Deng Y B, Guo Y J. Uniqueness of stationary solutions with vacuum of Euler-Poisson equations. Acta Math Sci, 2003, 23B(3): 405--412
[4] Deng Y B, Yang T. Multiplicity of stationary solutions to the Euler-Poisson equations. J Differential Equations, 2006, 231: 252--289
[5] Jang J H. Nonlinear instability in gravetational Euler-Poisson system for γ=6/5. Arch Ration Mech Anal, 2008, 188(2): 265--307
[6] Lin S S. Stability of gaseous stars in spherically symmetric motions. SIAM J Math Anal, 1997, 28(3): 539--569
[7] Lions P. The concentration-compactness principle in the calculus of variations. The locally compact case. Part I, Ann Inst H Poincare Anal Non Lineaire, 1984, 1: 109--145
[8] Luo T, Smoller J. Existence and non-linear stability of rotating star solutions of the compressible Euler-Poisson equations. Arch Rational Mech Anal, 2009, 191(3): 447--496
[9] Rein G. Non-Linear stability of gaseous stars. Arch Ration Mech Anal, 2003, 168(2): 115--130
[10] Rein G. Reduction and a concentration-compactness principle for energy-Casimir functionals. SIAM J Math Anal, 2002, 33(4): 896--912 |