[1] Lotka A. Elements of Physical Biology. Baltimore:Williams & Wilkins Company, 1925 [2] AlNoufaeya K S, Marchantb T R, Edwardsb M P. The diffusive Lotka-Volterra predator-prey system with delay. Math Biosci, 2015, 270:30-40 [3] Lotka A J. Contribution to the theory of periodic reaction. J Phys Chem, 1910, 14(3):271-274 [4] Goel N S, et al. On the Volterra and Other Non-linear Models of Interacting Populations. Academic Press Inc, 1971 [5] Berryman A A. The origins and evolution of predator-prey theory. Ecology, 1992, 73(5):1530-1535 [6] Rosenzweig M L, MacArthur R H. Graphical representation and stability conditions of predator-prey interactions. Am Nat, 1963:209-223 [7] Jost C, Devulder G, Vucetich J A, Peterson R, Arditi R. The wolves of isle royale display scale-invariant satiation and density dependent predation on moose. J Anim Ecol, 2005, 74(5):809-816 [8] Wang J, Shi J. Perdator-pery system with strong Allee effect in prey. J Math Biology, 2011, 62(3):291-331 [9] Qi J, Su Z Y. Predator-prey system with positive effect for prey. Acta Ecologica Sinica, 2011, 31(24):7474-7478 [10] Kot M. Elements of Mathematical Ecology. London:The Cambridge University Press, 2011:107-160 [11] Maritin A, RUAN S. Predator-prey models with delay and prey harvesting. J Math Biology, 2011, 43(3):247-267 [12] He Z M, Lai X. Bifurcation and chaotic behavior of a discrete-time predator-prey system. Nonlinear Anal RWA, 2011, 12(1):403-417 [13] Khoshsiar G R, Alidoustia J, Bayati E A. Stability and dynamics of a fractional order Leslie-Gower predatorprey model. Appl Math Mode, 2016, 40(3):2075-2086 [14] Tang H, Liu Z H. Hopf bifurcation for a predator-prey model with age structure. Appl Math Mode, 2016, 40(2):726-737 [15] Buffoni G, Groppi M, Soresina C. Dynamics of predator-prey models with a strong Allee effect on the prey and predator-dependent trophic functions. Nonlinear Anal RWA, 2016, 30:143-169 [16] AlNoufaey K S, Marchant T R, Edwards M P. The diffusive Lotka-Volterra predator-prey system with delay. Math Biosci, 2015, 270:30-40 [17] Yang L, Zhang Y M. Positive steady states and dynamics for a diffusive predator-prey system with a degeneracy. Acta Math Sci, 2016, 36B(2):537-548 [18] Yousefnezhad M, Monammadi S A. Stability of a predator-prey system with prey taxis in a general class of functional responses. Acta Math Sci, 2016, 36B(1):62-72 [19] Zeng X Z, Gu Y G. Persistence and the global dynamics of the positive solutions for a ratio-dependent predator-prey system with a crowding term in the prey equation. Acta Math Sci, 2016, 36B(3):689-703 [20] Gupta R D, Kundn D. Generalized exponential distributions:different methods of estimation. J Statist Computs Simu, 2001, 69(3):315-338 [21] Kundn D, Gupta R D. Generalized exponential distributions:Bayesian estimations. Comput Statist Data Analsis, 2008, 52:1873-1883 [22] Chen S Y, Zhang Y. Stability and bifurcation analysis of a predator-prey model with piecewise constant arguments. J Lanzhou university (Natural Science), 2012, 48(3):103-117 [23] Chen S Y, Jin B. Neimark-Sacker bifurcation behavior of predator-prey system with piecewise constant arguments. Acta Ecologica Sinica, 2015, 35(7):2339-2348 [24] Gurcan F, Kartal S, Ozturk I, Bozkurt F. Stability and bifurcation analysis of a mathematical model for tumor-immune interaction with piecewise constant arguments of delay. Chaos Solitons Fractals, 2014, 68:169-179 [25] Zheng B D, Liang L J, Zhang C R. Extended jury criterion. Sci China Math, 2010, 53(4):1133-1150 [26] Yuri A, Kuznetsov. Elements of Applied Bifurcation Theory. New York:Springer-Verlag, Science Press, 1998:106-163 [27] Carr J. Application of the Center Manifold Theory. New York:Springger-Verlag, 1981 |