[1] Andreucci D, Teedev A F. A Fujita type result for a degenerate Neumann problem with non compact boundary. J Math Anal Appl, 1999, 231: 543--567
[2] Bandle C, Levine H A, Zhang Q S. Critical exponents of Fijita type for inhomogeneous parabolic equations and systems. J Math Anal Appl, 2000, 251: 624--648
[3] Deng K, Levine H A. The role of critical exponents in blow-up theorems: The sequel. J Math Anal Appl, 2000, 243: 85--126
[4] Fujita H. On the blowing up of solutions of the Cauchy problem for ut=?u+u1+σ. J Fac Sci Univ Tokyo Sect I, 1966, 13: 109--124
[5] Galaktionov V A. On conditions for there to be no global solutions of a class of quasilinear parabolic equations. USSR Comp Math and Math Phys, 1982, 22: 73--90
[6] Galaktionov V A. Blow-up for quasi-linear heat equations with critical Fujita's exponents. Proc Roy Soc Edinburgh Sect A, 1994, 124: 517--525
[7] Hayakawa K. On the nonexistence of global solutions of some semilinear parabolic differential equations.
Proc Japan Acad, 1973, 49: 503--525
[8] Kobayashi K, Sirao T, Tanaka H. On the blowing up problem for semilinear heat equations.J Math Soc Japan, 1977, 29: 407--424
[9] Levine H A. The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32: 262--288
[10] Liu X F, Wang M X. The critical exponent of doubly singular parabolic equations. J Math Anal Appl, 2001, 257: 170--188
[11] Qi Y W. On the equation ut=?uα + uβ . Proc Roy Soc Edinburgh Sect A, 1993, 123: 373--390
[12] Serrin J, Zou H H. Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Math, 2002, 189: 79--142
[13] Weissler F B. Existence and nonexistence of global solutions for a semilinear heat equations. Israel J Math, 1981, 38: 29--40
[14] Wu Z Q, Zhao J N, Yi J X, et al. Nonlinear Diffusion Equations. Jinlin: Jinlin University Press, 1996 (in hinese)
[15] Ye Q X, Li Z Y. An Introduction to Reaction-Diffusion Equations. Beijing: Science Press, 1994 (in Chinese)
[16] Zhao J N. On the Cauchy problem and initial traces for the evolution P-Laplacian equations with strongly nonlinear sources. J Differential Equations, 1995, 121: 329--383
[17] Zhang Q S. Blow-up results for nonlinear parabolic equations on manifolds. Duke Math J, 1999, 97(3): 515--539
[18] Zeng X. Blow-up results and global existence of positive solutions for the inhomogeneous evolution P-Laplacian equations. Nonlinear Anal TMA, 2007, 66: 1290--1301
[19] Zeng X. Existence and nonexistence of global positive solutions for the evolution P-Laplacian equations in exterior domains. Nonlinear Anal TMA, 2007, 67: 901--916
[20] Zeng X. The critical exponents for the quasi-linear parabolic equations with inhomogeneous terms. J Math Anal Appl, 2007, 332: 1408--1424 |