[1] Arioli G, Szulkin A. A semilinear Schr\"{o}dinger equation in the presence of a magnetic field. Arch Rat Mech Anal, 2003, 170: 277--295
[2] Brown K J. The Nehari manifold for a semilinear elliptic equation involving a sublinear term. Calc Var Partial Differ Equ, 2005, 22: 483--494
[3] Binding P A, Drabek P, Huang Y X. On Neumann boundary value problems for some quasilinear elliptic equations. Elec J Differ Equ, 1997, 5: 1--11
[4] Brown K J, Zhang Y. The Nehari manifold for a semilinear elliptic problem with a sign changing weight function.
J Differ Equ, 2003, 193: 481--499
[5] Cingolani S. Semilinear stationary states of Nonlinear Schrödinger equations with an external magnetic field.
J Differ Equ, 2003, 188: 52--79
[6] Chabrowski J, Costa D G. On a class of Schrödinger-type equations with indefinite weight functions. Comm Partial Differ Equ, 2008, 33(8): 1368--1393
[7] Chabrowski J, Andrzej Szulkin. On the Schrödinger equation involving a critical Sobolev exponent and
magnetic field. Topol Mech Nonl Anal, 2005, 4: 59--78
[8] Costa D G, Tehrani H. Existence of positive solutions for a class of indefinite elliptic problems. Calc Var Partial Differ Equ, 2001, 13(2): 159--189
[9] Drabek P, Pohozaev S I. Positive solutions for the P-Laplacian: application of the fibering method. Proc Royal Soc Edinburgh, 1997, 127: 703--726
[10] Dai Shuang, Yang Jianfu. Existence of nonnegative solutions for a class of p-Laplacian equations in
RN. Adv Nonlinear Studies, 2007, 7(1): 107--130
[11] Kurata Kazuhiro. Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Analysis, 2000, 41: 763--778
[12] Lieb E H, Loss M. Analysis. Graduate Studies in Mathematics 14. AMS, 1997
[13] Lions P L. The concentration-compactness principle in the calculus of variations: The limit case, Part I. Revista Math Iberoamericano, 1985, 1(1): 145--201
[14] Lions P L. The concentration-compactness principle in the calculus of variations: The limit case, Part II. Revista Math Iberoamericano, 1985, 1(2): 45--121
[15] Nehari Z. On a class of nonlinear second-order differential equations. Trans Amer Math Soc, 1960, 95: 101--123
[16] Willem M. Minimax Theorems. Boston, Basel, Berlin: Birkhauser, 1996
|