[1] Andreotti A, Vesentini E. Carleman estimates for the Laplace–Beltrami operator on complex manifolds.
Publ Math Inst Hantes ´Etudes Sci, 1965, 25: 81–130
[2] Burns D, Shnider S, Wells R O. On deformations of strictly pseudoconvex domain. Invent Math, 1978,
46: 237–253
[3] Cheeger J, Gromoll D. On the structure of complete manifolds of non-negative curvature. Ann Math, 1972, 46: 413–433
[4] Chau A, Tam L F. On the complex structure of K¨ahler manifolds with nonnegative curvature. J Differ Geom, 2006, 73(3): 491–530
[5] Chen B L, Tang S H, Zhu X P. A uniformization theorem of complete noncompact K¨ahler surfaces with
positive bisectional curvature. J Differ Geom, 2004, 67(3): 519–570
[6] Demailly J P. Mesures de Monge-Ampéere et caractérisation géometri que des variétés algébriques affines.
Mem Soc Math France, 1985, 19: 1–23
[7] Fefferman C. The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent Math,
1974, 26: 1–65
[8] Greene R E, Wu H. C1 convex functions and manifolds of positive curvature. Acta Math, 1976, 137:
209–245
[9] Greene R E, Wu H. Analysis on non-compact K¨ahler manifolds. Proc Symp Pure Math, Vol 30 Part II.
Amer Math Soc, 1977
[10] Gromoll D, Meyer W. On complete open manifolds of positive curvature. Ann Math, 1969, 90: 75–90
[11] H¨ormander L. L2-estimates and existence theorems for the @-operator. Acta Math, 1965, 113: 89–152
[12] Huber A. On subharmonic functions and differential geometry in the large. Comm Math Helv, 1957, 32:
13–72
[13] Li P, Schoen R. Lp and mean value properties of subharmonic functions on Riemannian manifolds. Acta
Math, 1984, 153: 279–301
[14] Mok N. An embedding theorem of complete K¨ahler manifolds of positive bisectional curvature onto affine
algebraic varieties. Bull Soc Math France, 1984, 112: 197–258
[15] Mok N. Compactification of complete K¨ahler surfaces of finite volume satisfying certain curvature conditions.
Ann Math, 1989, 129: 383–425
[16] Mok N. An embedding theorem of complete K¨ahler manifolds of positive Ricci curvature onto quasiprojective
varieties. Math Ann, 1990, 286: 377–408
[17] Mok N, Zhong J Q. Compactifying complete K¨ahler–Einstein manifolds of finite topological type and
bounded curvature. Ann Math, 1989, 129: 427–470
[18] Nadel A, Tsuji H. Compactification of complete K¨ahler manifolds of negative Ricci curvature. J Differ
Geom, 1988, 28: 503–512
[19] Ramanujam C P. A topological charaterization of the affine plane as an algebraic variety. Ann Math, 1971,
94: 69–88
[20] Schoen R, Yau S T. Lectures on differential geometry//Conference Proceedings and Lecture Notes in
Geometry and Topology, Volume 1. International Press Publications, 1994
[21] Shi W X. Ricci flow and the uniformization on complete noncompact K¨ahler manifolds. J Differ Geom,
1997, 45: 94–220
[22] Simha R R. On the analyticity of certain singularity sets. J Indian Math Soc, 1975, 39: 281–283
[23] Siu Y T. Pseudoconvexity and the problem of Levi. Bull Amer Math Soc, 1978, 84: 481–512
[24] Siu Y T, Yau S T. Complete K¨ahler manifolds with non-positive curvature of faster than quadratic decay.
Ann Math, 1977, 105: 225–264
[25] ToWK. Quasi-projective embeddings of noncompact complete K¨ahler manifolds of positive Ricci curvature
and satisfying certain topological conditions. Duke Math J, 1991, 63(3): 745–789
[26] Yau S T. Problem Section//Yan S T, ed. Seminar on Differential Geometry. Princeton: Princeton Univ
Press, 1982
[27] Yau S T. A review of complex differential geometry. Proc Symp Pure Math, Vol 52 Part II. Amer Math
Soc, 1991
|