[1] Bourgeois A J, Beale J T. Validity of the quasigeostrophic model for large-scale flow in the atmosphere
and ocean. SIAM J Math Anal, 1994, 25: 1023-1068
[2] Cordoba D. Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann Math,
1998, 148: 1135-1152
[3] Charve F. Global well posedness and asymptotics for a geophysical fluid system. Comm in PDE, 2004,
29: 1919-1940
[4] Constantin P, Majda A, Tabak E. Formation of strong fronts in the 2-D quasigeostrophic thermal active
scalar. Nonlinearity, 1994, 7: 1495-1533
[5] Constantin P, Majda A, Tabak E. Singular front formation in a model for quasigeostrophic flow. Phys
Fluids, 1994, 6: 9-11
[6] Cao C, Titi E S. Global well-posedness and finite dimensional global attractor for a 3-D planetary
geostrophic viscous model. Comm Pure Appl Math, 2003, 56: 198-133
[7] Cao C, Titi E S, Ziane M. A 揾orizontal?hyper-diffusion 3-D thermocline planetary geostrophic model:
well-posedness and long-time behavior. Nonlinearity, 2004, 17: 1749-1776
[8] Cao C, Titi E S. Global well-posedness of the three-dimensional viscous primitive equations of large-scale
ocean and atmosphere dynamics. Ann Math, 2007, 166: 245?67
[9] Constantin P, Wu J. Behavior of solutions of 2D quasi-geostrophic equations. SIAM J Math Anal, 1999,
30: 937?48
[10] Embid P F, Majda A J. Averaging over fast gravity waves for geophysical flows with arbitrary potential
vorticity. Comm in PDE, 1996, 21: 619-658
[11] Huang D, Guo B. On the existence of atmospheric attractors. Sci in China, Ser D: Earth Sciences, 2008,
51(3): 469?80
[12] Guo B, Huang D. Existence of weak solutions and trajectory attractors for the moist atmospheric equations
in geophysics. J Math Phys, 2006, 47: 083508
[13] Guill磂n-Gonz碼lez F, Masmoudi N, Rodr待guez-Bellido M A. Anisotropic estimates and strong solutions for
the primitive equations. Diff Int Equ, 2001, 14: 1381-1408
[14] Hu C, Temam R, Ziane M. The primimitive equations of the large scale ocean under the small depth
hypothesis. Disc and Cont Dyn Sys, 2003, 9(1): 97-131
[15] Lions J L. Quelques Méthodes De résolutions Des problèmes Aux Limites Nonlinéaires. Paris: Dunod,
1969
[16] Lions J L, Temam R, Wang S. New formulations of the primitive equations of atmosphere and applications.
Nonlinearity, 1992, 5: 237-288
[17] Lions J L, Temam R, Wang S. Models of the coupled atmosphere and ocean (CAO I). Computational
Mechanics Advance, 1993, 1: 1-4
[18] Lions J L, Temam R, Wang S. On the equations of the large scale ocean. Nonlinearity, 1992, 5: 1007-1053
[19] Majda A. Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in
Mathematics, 9. Amer Math Soc, 2003
[20] Pedlosky J. Geophysical Fluid Dynamics. 2nd ed. Berlin, New York: Springer-Verlag, 1987
[21] Simonnet E, Tachim Medjo T, Temam R. Barotropic-baroclinic formulation of the primitive equations for
the ocean. Appl Anal, 2003, 82(5): 439-456
[22] Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. 2nd ed. Appl Math Ser,
Vol 68. New York: Springer-Verlag, 1997
[23] Temam R, Ziane M. Some mathematical problems in geophysical fluid dynamics//Handbook of Mathe-
matical Fluid Dynamics, 3. Amsterdam: Elsevier, 2005: 535-258
|