[1] Alexiades V, Solomon A D. Mathematical Modeling of Melting and Freezing Processes. McGraw-Hill, 1993
[2] Bolotnov I A, Behafarid F, Shaver D, Antal S P, Jansen K E, Samulyak R, Podowski M Z. Interaction of computational tools for multiscale multiphysics simulation of generation-iv reactors//Proceedings of International Congress on Advances in Nuclear Power Plants, 2010. To be published
[3] Caginalp G, Fife P. Higher-order phase field models and detailed anisotropy. Phys Rev B, 1986, 34: 4940--4943
[4] Caginalp G. Stefan and Hele-Shaw type models as asymptotic limits of the phase field equations. Phys Rev A, 1989, 39: 5887--5896
[5] Du Jian, Fix Brian, Glimm James, Jia Xicheng, Li Xiaolin, Li Yunhua, Wu Lingling. A simple package for front tracking. J Comput Phys, 2006, 213: 613--628
[6] Duderstadt J, Hamilton L. Nuclear Reactor Analysis. 2nd ed. John Wiley \& Sons, Inc, 1976
[7] Fix G.//Fasano A, Promiceiro M, ed. Free Boundary Problems. London: Pitman, 1983: 580
[8] George E, Glimm J, Li X L, Li Y H, Liu X F. The influence of scale-breaking phenomena on turbulent mixing rates. Phys Rev E, 2006, 73: 1--5
[9] Glimm J, Grove J W, Li X -L, Shyue K -M, Zhang Q, Zeng Y. Three dimensional front tracking. SIAM J Sci Comp, 1998, 19: 703--727
[10] Johansen H, Colella P. A cartesian grid embedding boundary method for poisson's equation on irregular domains. J Comput Phys, 1998, 147: 60--85
[11] Sullivan J M, Lynch D R, O'Neill K. Finite-element simulation of planare instabilities during solidification of an undercooled melt. J Comput Phys, 1987, 69: 81--111
[12] Juric D, Tryggvason G. A front tracking method for dendritic solidi-fication. J Comput Phys, 1996, 123: 127--148
[13] Langer.//Grinstein G, Mazenko G, ed. Directions in Condensed Matter Physics. Singapore: Worls Scientific, 1986: 164
[14] LeVeque R J, Li Z L. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J
Numer Anal, 1994, 31: 1019--1044
[15] Liu X -D, Fedkiw R, Kang M. A boundary condition capturing method for poisson's equation on irregular domains. J Comput Phys, 2000, 160: 151--178
[16] Liu X F, Li Y H, Glimm J, Li X L. A front tracking algorithm for limited mass diffusion. J Comput Phys, 2007, 222: 644--653
[17] Lu T, Xu Z L, Samulyak R, Glimm J, Ji X M. Dynamic phase boundaries for compressible fluids. SIAM J Sci Comp, 2008, 30: 895--815
[18] Mayo A. The fast solution of poisson and the biharmonic equations on irregular regions. SIAM J Numer Anal, 1984, 21: 285--299
[19] McCorquodale P, Colella P, Johansen H. A cartesian grid embedded boundary method for the heat equation on irregular domains.
J Comput Phys, 2001, 173: 620--635
[20] Mckenney A, Mayo A, Greengard L. A fast poisson solver for complex geometries. J Comput Phys, 1995, 118: 348--355
[21] Perskin Charles S. The immersed boundary method. Acta Numerica, 2002, 11: 479--517
[22] Samulyak R, Du J, Glimm J, Xu Z. A numerical algorithm for MHD of free surface flows at low magnetic reynolds numbers. J Comput Phys,
2007, 226: 1532--1546
[23] Schwartz P, Barad M, Colella P, Ligocki T. A cartesian grid embedded boundary method for the heat equation and Poisson's equation in three dimensions. J Comput Phys, 2006, 211: 531--550
[24] Strain J, Sethian J. Crystal Growth and dendritic solidification. J Comput Phys, 1992, 98: 231--253
[25] Twizell E H, Gumel A B, Arigu M A. Second-order, l0-stable methods for the heat equation with time-dependent boundary conditions. Adv Comput Math, 1996, 6: 333
[26] Wheeler A A.//Hurle D T J, ed. Handbook of Crystal Growth, Volume 1B. Amsterdam: North-Holland, 1993: 783 |