[1] Andrews D W K. Laws of large numbers for dependent non-identically distributed random variables. Economet Theor, 1988, 4(3):458-467 [2] Bai Z D, Su C. The complete convergence for partial sums of i.i.d. random variables. Sci China (Ser A), 1985, 28(12):1261-1277 [3] Baum L E, Katz M L. Convergence rate in the law of large numbers. Trans Amer Math Soc, 1965, 120:108-123 [4] Chen P, Wang D. Complete moment convergence for sequence of identically distributed φ-mixing random variables. Acta Math Sin (Engl Ser), 2010, 26(4):679-690 [5] Chen X, White H. Laws of large numbers for Hilbert space-valued mixingales with applications. Economet Theor, 1996, 12(2):284-304 [6] Chow Y S. On the rate of moment convergence of sample sums and extremes. Bull Inst Math Acad Sin, 1988, 16(3):177-201 [7] Davidson J. An L1-convergence theorem for heterogeneous mixingale arrays with moments. Statist Probab Lett, 1993, 16(4):301-304 [8] Davidson J, De Jong R M. Strong laws of large numbers for dependent heterogeneous processes:a synthesis of recent and new results. Econometric Rev, 1997, 16(3):251-279 [9] De Jong R M. Laws of large numbers for dependent heterogeneous processes. Economet Theor, 1995, 11(2):347-358 [10] De Jong R M. A strong law of large numbers for triangular mixingale arrays. Statist Probab Lett, 1996, 27(1):1-9 [11] De Jong R M. Central limit theorems for dependent heterogeneous random variable. Economet Theor, 1997, 13(3):353-367 [12] De Jong R M. Weak laws of large numbers for dependent random variables. Ann Econom Statist, 1998, 51:209-225 [13] Fazekas I, Klesov O. A general approach to the strong laws of large numbers. Theory Probab Appl, 2002, 45(3):436-449 [14] Gan S. On the convergence of weighted sums of Lq-mixingale arrays. Acta Math Hungar, 1999, 82(1):113-120 [15] Gan S. Strong laws of large numbers for B-valued Lq-mixingale sequences and the q-smoothness of Banach space. Teor Veroyatnost i Primenen, 2001, 46(4):811-814(English Version:Theory Probab Appl, 2002, 46(4):717-721) [16] Gan S. Rosenthal's inequality and its applications for B-valued random elements. Acta Math Sci, 2010, 30A(2):327-334 [17] Hall P, Heyde C C. Martingale Limit Theory and its Applications. New York:Academic Press, 1980 [18] Hansen B E. Strong laws for dependent heterogeneous processes. Economet Theor, 1991, 7(2):213-221 [19] Hansen B E. Erratum:strong laws for dependent heterogeneous processes. Economet Theor, 1992, 8(3):421-422 [20] Hong D H, Kim H K, Kim J Y. A weak convergence theorem for mixingale arrays. J Korean Statist Soc, 1995, 24:273-280 [21] Hsu P L, Robbins H. Complete convergence and the law of large numbers. Proc Nat Acad Sci USA, 1947, 33(2):25-31 [22] Hu Y. On complete convergence for Lp-mixingales. Internat J Math Math Sci, 2000, 24(11):737-747 [23] Hu Y. Complete convergence theorems for Lp-mixingales. J Math Anal Appl, 2004, 290(1):271-290 [24] Kuczmaszewska A. On complete convergence in Marcinkiewica-Zygmund type SLLN for negatively associated random variables. Acta Math Hungar, 2010, 128(1/2):116-130 [25] Li W. Complete convergence for weighted sums under END setup. Acta Math Sci, 2015, 36A(3):448-455 [26] Liang H Y, Li D L, Rosalsky A. Complete moment and integral convergence for sums of negatively associated random variables. Acta Math Sin (Engl Ser), 2010, 26(3):419-432 [27] Liang H Y, Ren Y. Complete convergence for B-valued Lp-mixingale sequences. Internat J Math Math Sci, 1998, 21(4):749-754 [28] Meng Y, Lin Z Y. Maximal inequalities and laws of large numbers for Lq-mixingale arrays. Statist Probab Lett, 2009, 79(13):1539-1547 [29] McLeish D L. A maximal inequality and dependent strong laws. Ann Probab, 1975, 3(5):829-839 [30] McLeish D L. Invariance principles for dependent variables. Z Wahr Verw Gebiete, 1975, 32(3):165-178 [31] McLeish D L. On the invariance principle for nonstationary mixingales. Ann Probab, 1977, 5(4):616-621 [32] Qiu D H, Chen P. Complete and complete moment convergence for weighted sums of widely orthant dependent random variables. Acta Math Sin (Engl Ser), 2014, 30(9):1539-1548 [33] Qiu D H, Chen P. Complete moment convergence for i.i.d. random variables. Statist Probab Lett, 2014, 91:76-82 [34] Qiu D H, Chen P. Convergence for moving average processes under END set-up. Acta Math Sci, 2015, 35A(4):756-768 [35] Qiu D H, Urmeneta H, Volodin A. Complete moment convergence for weighted sums of sequences of independent random elements in Banach spaces. Collect Math, 2014, 65(2):155-167 [36] Seneta E. Regularly Varying Functions. Lecture Notes in Math, 508. Berlin:Springer, 1976 [37] Sung S H. Complete qth moment convergence for arrays of random variables. J Inequal Appl, 2013, 2013:24, doi:10.1186/1029-242X-2013-24 [38] Wang D, Su C. Moment complete convergence for sequences of B-valued iid random elements. Acta Math Appl Sin, 2004, 27(3):440-448(in Chinese) [39] Wang D, Zhao W. Moment complete convergence for sums of a sequence of NA random variables. Appl Math J Chinese Univ Ser A, 2006, 4(4):445-450 [40] Wang X J, Hu S H. Complete convergence and complete moment convergence for martingale difference sequence. Acta Math Sin (Engl Ser), 2014, 30(1):119-132 [41] Yang W Z, Shen Y, Hu S H, Wang X J. Hájek-Rényi-type inequality and strong law of large numbers for some dependent sequences. Acta Math Appl Sin Engl Ser, 2012, 28(3):495-504 [42] Yin G. On operator-valued mixingales. Stochastic Anal Appl, 1989, 7(3):355-366 |