[1] Besicovitch A S, Taylor S J. On the complementary intervals of a linear closed set of zero Lebesgue measure. J London Math Soc, 1954, 29:449-459
[2] Cabrelli C, Mendivil F, Molter U, Shonkwiler R. On the h-Hausdorff measure of cantor sets. Pac J of Math, 2004, 217:29-43
[3] Cawely R, Mauldin R D. Multifractal decompositions of Moran fractals. Adv Math, 1992, 92:196-236
[4] Deng J, Wang Q, Xi L F. Gap sequences of self-conformal sets. Arch Math (Basel), 2015, 104(4):391-400
[5] Edgar G A, Mauldin R D. Multifractal decompositions of digraph recursive fractals. Proc London Math Soc, 1992, 65:604-628
[6] Falconer K J. Techniques in Fractal Geometry. New York:Wiley, 1997
[7] Garcia I, Molter U, Scotto R. Dimension functions of Cantor sets. Proc Amer Math Soc, 2007, 135(10):3151-3161
[8] Hausdorff. Dimension und äußeres Maß. Math Ann, 1919, 79:157-179
[9] Hua S, Rao H, Wen Z Y, Wu J. On the structures of Moran sets. Sci China, Ser A, 2000, 43(8):836-852
[10] Hare, Ng. Hausdorff and packing measures of balanced Cantor sets. Real Analysis Exchange, 2015, 40:113-128
[11] Li Jinjun, Wu Min. Pointwise dimensions of general Moran measures with open set condition. Science in China Ser A Mathematics, 2010, 54
[12] Li Yanzhe, Wu Min. On the equivalence of quasisymetric mappings on non-connected sets. J Math Anal Appl, 2015, 435(2):1400-1409
[13] O'Neil T. The multifractal spectrum of quasi-self-similar measures. J Math Anal Appl, 1997, 211(1):233-257
[14] Olsen L. A multifractal formalism. Adv Math, 1995, 116:82-195
[15] Olsen L, Winter S. Normal and non normal points of self-similar sets and divergence points of self-similar measures. J London Math Soc, 2003, 67:103-122
[16] Olsen L. Mixed generalized dimension of self-similar measures. J Math Anal Appl, 2005, 306:519-539
[17] Olsen L. Multifractal geometry//Fractal Geometry and Stochastics. Ⅱ (Greifswald/Koserow, 1998), Progr Probab 46. Basel:Birkhäuser, 2000:3-37
[18] Pesin Y B. Dimension Theory in Dynamical Systems. Chicago:University of Chicago Press, 1997
[19] Pasatharathy K R. Probability Measures on Metric Spaces. New York:Academic Press, 1967
[20] Roger C A. Hausdorff Measures. Cambridge Mathematical Library. Cambridge:Cambridge University Press, 1998
[21] Rao Hui, Ruan Huojun, Yang Yamin. Gap sequence, Lipschitz equivalence and box dimension of fractal sets. Nonlinearity, 2008, 21(6):1339-1347
[22] Tricot C. Curves and Fractal Dimension. New York:Springer-Verlag, 1995
[23] Tricot C. Two definition of fractional dimension. Math Proc Camb Phil Soc, 1982, 91:57-74
[24] Wen Zhiying. Moran sets and Moran classes. Chinese Sci Bull, 2001, 46:1849-1856
[25] Wen Shengyou, Wu Min. Relations between packing premeasure and measure on metric space. Acta Math Sci, 2007, 27(1):137-144
[26] Wu Min. The multifractal spectrum of some moran measures. Science in China Ser A Mathematics, 2005, 48:1-16
[27] Xiong Ying, Wu Min. Category and dimensions for Moran-type sets. J Math Anal Appl, 2009, 358(1):125-135 |