[1] Aronson D G, Weinberger H F. Nonlinear diffusion in population genetics, combustion and nerve propaga- tion//Lecture Notes in Mathematics. Vol 446. Berlin: Springer-Verlag, 1975: 5-49
[2] Bellman R, Cooke K L. Differential-difference equations. New York-London: Academic Press, 1963
[3] Berezansky L, Braverman E. On exponential stability of a linear delay differential equation with an oscil- lating coefficient. Appl Math Lett, 2009, 22(12): 1833-1837
[4] Berezansky L, Braverman E. On nonoscillation of advanced differential equations with several terms. Abstr Appl Anal, 2011, Art. ID 637142, 14 pp
[5] Burton T A, Furumochi T. Fixed points and problems in stability theory for ordinary and functional differential equations. Dynam Systems Appl, 2001, 10(1): 89-116
[6] Britton N F. Spatial structures and periodic traveling waves in an integro-differential reaction diffusion population model. SIAM J Appl Math, 1990, 50: 1663-1688
[7] Cohen M A, Grossberg S. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans Systems Man Cybernet, 1983, 13: 815-826
[8] Dubois D M. Extension of the Kaldor-Kalecki model of business cycle with a computational anticipated capital stock. Journal of Organisational Transformation and Social Change, 2004, 1(1): 63-80
[9] Gabor R V. Successive approximations for the solution of second order advanced differential equations. Carpathian J Math, 2006, 22(1/2): 57-64
[10] Jankowski T. Advanced differential equations with nonlinear boundary conditions. J Math Anal Appl, 2005, 304(2): 490-503
[11] Kaddar A, Talibi Alaoui H. Fluctuations in a mixed IS-LM business cycle model. Electronic Journal of Differential Equations, 2008, 2008(134): 1-9
[12] Kitamura Y, Kusano T. Oscillation of first-order nonlinear differential equations with deviating arguments. Proc Amer Math Soc, 1980, 78(1): 64-68
[13] Kordonis I -G, Philos Ch G. Oscillation and nonoscillation in delay or advanced differential equations and in integrodifferential equations. Georgian Math J, 1999, 6(3): 263-284
[14] Ladas G, Stavroulakis I P. Oscillations caused by several retarded and advanced arguments. Journal of Differential Equations, 1982, 44(1): 134-152
[15] Levin S A. Dispersion and population interaction. Amer Natur, 1974, 108: 207-228
[16] Li X, Zhu D. Oscillation and nonoscillation of advanced differential equations with variable coefficients. J Math Anal Appl, 2002, 269(2): 462-488
[17] Myschkis A D. Lineare Differentialgleichungen mit nacheilendem Argument. Berlin: (German) Deutscher Verlag der Wissenschaften, 1955
[18] Pontryagin L S, Gamkreledze R V, Mischenko E F. The mathematical theory of optimal processes. New York-London: Interscience Publishers John Wiley & Sons, Inc, 1962
[19] Shah S M, Wiener J. Advanced differential equations with piecewise constant argument deviations. Internat J Math Math Sci, 1983, 6(4): 671-703
[20] Schulman L S. Correlating arrows of time. Phys Rev, 1973, 7D: 2868-2874
[21] Wiener J, Debnath L, Shah S M. Analytic solutions of nonlinear neutral and advanced differential equations. Internat J Math Math Sci, 1986, 9(2): 365-372
[22] Pravica D W, Randriampiry N, Spurr M J. Applications of an advanced differential equation in the study of wavelets. Appl Comput Harmon Anal, 2009, 27(1): 2-11
[23] Pravica D W, Randriampiry N, Spurr M J. Theta function identities in the study of wavelets satisfying advanced differential equations. Appl Comput Harmon Anal, 2010, 29(2): 134-155 |