[1] Miller S S, Mocanu P T. Subordinants of differential superordinations. Complex Var Theory Appl, 2003, 48(10): 815–826
[2] Miller S S, Mocanu P T. Differential Subordinations: Theory and Applications. Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol 225. New York, Basel: Marcel Dekker, 2000
[3] Bulboac?a T. Integral operators that preserve the subordination. Bull Korean Math Soc, 1997, 32: 627–636
[4] Bulboac?a T. On a class of integral operators that preserve the subordination. Pure Math Appl, 2002, 13: 87–96
[5] Bulboac?a T. A class of superordination-preserving integral operators. Indag Math (NS), 2002, 13: 301–311
[6] Cho N E, Bulboac?a T. Subordination and superordination properties for a class of integral operators. Acta Math Sin (Engl Ser), 2010, 26(3): 515–522
[7] Bulboac?a T. Sandwich-type theorems for a class of integral operators. Bull Belg Math Soc Simon Stevin, 2006, 13(3): 537–550
[8] Bulboac?a T. Sandwich-type results for a class of convex integral operators. Acta Math Sci, 2012, 32B(3): 989–1001
[9] Pommerenke Ch. Univalent Functions. G¨ottingen: Vandenhoeck and Ruprecht, 1975
[10] Miller S S, Mocanu P T. Differential subordinations and univalent functions. Michigan Math J, 1981, 28(2): 157–172
[11] Miller S S, Mocanu P T. Univalent solutions of Briot-Bouquet differential equations. J Differential Equations, 1985, 56(3): 297–309
[12] Miller S S, Mocanu P T. Integral operators on certain classes of analytic functions//Univalent Functions, Fractional Calculus and their Applications. New York: Halstead Press, J Wiley & Sons, 1989: 153–166
[13] Miller S S, Mocanu P T. Classes of univalent integral operators. J Math Anal Appl, 1991, 157(1): 147–165
[14] Gronwall T H. Some remarks on conformal representation. Ann Math, 1914/15, 16: 72–76 |