[1] Bhowmik B, Ponnusamy S, Wirths K J. On the Fekete-Szeg¨o problem for concave univalent functions. J Math Anal Appl, 2011, 373: 432–438
[2] Choi J H, Kim Y C, Sugawa T. A general approach to the Fekete-Szeg¨o problem. J Math Soc Japan, 2007, 59(3): 707–727
[3] Ciozda W. Sur la classe des fonctions convexes vers l’axe r´eel n´egatif. Bull Acad Polon Sci, 1979, 27(3/4): 255–261
[4] Elin M, Khavinson D, Reich S, Shoikhet D. Linearization models for parabolic dynamical systems via Abel´s functional equation. Ann Acad Sci Fenn, 2010, 35: 439–472
[5] Fekete M, Szeg¨o G. Eine Bemerkung ¨uber ungerade schlichte Funktionen. J London Math Soc, 1933, 8: 85–89
[6] Goodman A W, Saff E B. On the definition of close-to-convex function. Int J Math Math Sci, 1978, 1: 125–132
[7] Hengartner W, Schober G. On schlicht mappings to domains convex in one direction. Comm Math Helv, 1970, 45: 303–314
[8] Jameson G J O. Counting zeros of generalized polynomials: Descartes´ rule of signs and Leguerre´s extensions.
Math Gazette, 2006, 90(518): 223–234
[9] Kanas S. An unified approach to the Fekete-Szeg¨o problem. App Math Comp, 2012, 218: 8453–8461
[10] Kanas S, Lecko A. On the Fekete-Szeg¨o problem and the domain of convexity for a certain class of univalent
functions. Folia Sci Univ Tech Resov, 1990, 73: 49–57
[11] Kaplan W. Close to convex schlicht functions. Mich Math J, 1952, 1: 169–185
[12] Keogh F R, Merkes E P. A coefficient inequality for certain classes of analytic functions. Proc Amer Math Soc, 1969, 20: 8–12
[13] Koepf W. On the Fekete-Szeg¨o problem for close-to-convex functions. Proc Amer Math Soc, 1987, 101: 89–95
[14] Laguerre E N. Sur la th´eeorie des ´equations num´eriques. J Math Pures et Appl (in Oeuvres de Laguerre, vol 1. Paris (1898), 3-47), 1883, 9: 99–146
[15] Lecko A. On the class of functions convex in the negative direction of the imaginary axis. J Aust Math Soc, 2002, 73: 1–10
[16] Ozaki S. On the theory of multivalent functions. Sci Rep Tokyo Bunrika Daig Sect A, 1935, 2: 167–188
[17] Pommerenke Ch. Univalent Functions. G¨ottingen: Vandenhoeck & Ruprecht, 1975
[18] Robertson M S. Analytic functions star-like in one direction. Amer J Math, 1936, 58: 465–472
[19] Srivastava H M, Misra A K, Das M K. The Fekete-Szeg¨o problem for a Subclass of Close-to-Convex Functions. Complex Variables, 2001, 44: 145–163
[20] Turowicz A. Geometria zer Wielomian´ow (Polish) (Geometry of zeros of polynomials). Warszawa: PWN, 1967 |