[1] Alì G, Jüngel A. Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasmas. J Differential Equations, 2003, 190(2): 663--685
[2] Ancona M G, Tiersten H F. Microscopic physics of the Silicon inversion layer. Physical Review B, 1987, 35: 7959--7965
[3] Ancona M G, Iafrate G I. Quantum correction to the equation of state of an electron gas in a semiconductor. Physical Review B, 1989, 39: 9536--9540
[4] Baccarani G, Wordeman W R. An investigation of steady-state velocity overshoot effects in Si and GaAs devices. Solid State Electronics, 1985, 28: 407--416
[5] Brezzi F, Gasser I, Markowich P, Schmeiser C. Thermal equilibrium state of the quantum hydrodynamic model for semiconductor in one dimension. Appl Math Lett, 1995, 8: 47--52
[6] Bohm D. A suggested interpretation of the quantum theory in terms of ``hidden" valuables: I; II. Phys Rev, 1952, 85: 166--179; 180--193
[7] Cordier S, Grenier E. Quasineutral limit of an Euler-Poisson system arising from plasma physics. Comm Partial Differential Equations, 2000, 25: 1099--1113
[8] Degond P, Ringhofer C. Quantum moment hydrodynamics and the entropy principle. J Statist Phys, 2003, 112(3/4): 587--628
[9] Desjardins B, Lin C -K, Tso T -C. Semiclassical limit of the general derivative nonlinear Schrödinger equation. Mathematical Models and Methods in Applied Sciences, 2000, (3): 261--285
[10] Ferry D K, Zhou J -R. Form of the quantum potential for use in hydrdynamic equations for semiconductor device modeling. Phys Rev B, 1993, 48: 7944--7950
[11] Feynman R. Statistical Mechanics, a Set of Lectures. New York: W A Benjamin, 1972
[12] Gamba I, Jüngel A. Positive solutions to singular second and third order differential equations for quantum fluids. Arch Rational Mech Anal, 2001, 156: 183--203
[13] Gardner C. The quantum hydrodynamic model for semiconductors devices. SIAM J Appl Math, 1994, 54: 409--427
[14] Gardner C, Ringhofer C. Dispersive/hyperbolic models for transport in semiconducotr devices. accepted for publication in IMA Volumes in Mathematics and its Applications.
[15] Gasser I. Traveling wave solutions for a quantum hydrodynamic model. Appl Math Lett, 2001, 14(3): 279--283
[16] Gasser I, Hsiao L, Li H -L. Large time behavior of solutions of the bipolar hydrodynamical model
for semiconductors. J Differential Equations, 2003, 192(2): 326--359
[17] Gasser I, Jüngel A. The quantum hydrodynamic model for semiconductors in thermal equilibrium.
Z Angew Math Phys, 1997, 48: 45--59
[18] Gasser I, Lin C -K, Markowich P. A review of dispersive limits of the (non)linear Schrödinger-type equation.
Taiwanese J of Math, 2000, 4: 501--529
[19] Gasser I, Markowich P. Quantum hydrodynamics, Wigner transforms and the classical limit. Asymptotic Anal, 1997, 14: 97--116
[20] Gasser I, Markowich P A, Ringhofer C. Closure conditions for classical and quantum moment hierarchies in
the small temperature limit. Transp Theory Stat Phys, 1996, 25: 409--423
[21] Gyi M T, Jüngel A. A quantum regularization of the one-dimensional hydrodynamic model for semiconductors. Adv Diff Eqs, 2000, 5: 773--800
[22] Hao C -C, Jia Y -L, Li H -L. Quantum Euler-Poisson system: local existence. J Partial Differential Equations, 2003, 16(4): 306--320
[23] Huang F, Li H -L, Matsumura A. Existence and stability of steady-state of one-dimensional quantum hydrodynamic system for semiconductors. J Differential Equations, 2006, 225(1): 440-464
[24] Huang F, Li H -L, Matsumura A, Odanaka S. Well-posedness and stability of quantum hydrodynamics
for semiconductors in R3. preprint 2004
[25] Jia Y -L, Li H -L. Large-time behavior of solutions of quantum hydrodynamic model for semiconductors. Acta Math Sci Ser B, 2006, 26(1): 163--178
[26] Jüngel A. Quasi-hydrodynamic Semiconductor Equations. Progress in Nonlinear Differential Equations and its Applications. Basel: Birkhäuser, 2001
[27] Jüngel A. A steady-state potential flow Euler-Poisson system for charged quantum fluids. Comm Math Phys, 1998, 194: 463--479
[28] Jüngel A. Quasi-hydrodynamic semiconductor equations. Progress in Nonlinear Differential Equations.
Basel: Birkhäuser, 2001
[29] Jüngel A, Li H -L. Quantum Euler-Poisson systems: existence of stationary states. Archivum athematicum, 2004, 40(4): 435--456
[30] Jüngel A, Li H -L. Quantum Euler-Poisson systems: global existence and exponential decay. Quarterly Appl Math, 2004, 62(3): 569--600
[31] Jüngel A, Li H -L, Markowich P, Wang S. Recent progress on quantum hydrodynamic models for emiconductors. Hyperbolic Problems: Theory, Numerics, Applications. Berlin: Springer, 2003: 217--226
[32] Jüngel A, Li H -L, Matsumura A. Stability and relaxation asymptotic of quantum hydrodynamics model in R3.
J Differential Equations, 2006, 225: 1--25
[33] Jüngel A, Mariani M C, Rial D. Local existence of solutions to the transient quantum hydrodynamic equations. Math Models Methods Appl Sci, 2002, 12(4): 485--495
[34] Jüngel A, Peng Y -J. A hierarchy of hydrodynamic models for plasma: zero-relaxation-time limits.
Comm Partial Differential Equations, 1999, 24: 1007--1033
[35] Klusdahl N, Kriman A, Ferry, D, Ringhofer C. Self-consistent study of the resonant-tunneling diode.
Phys Rev B, 1989, 39: 7720--7735
[36] Li H -L, Lin C -K. Semiclassical limit and well-posedness of nonlinear Schr\"odinger-Poisson. Electronic Journal of Differential Equations, 2003, 2003(93): 1--17
[37] Li H -L, Lin C -K. Zero Debye length asymptotic of the quantum hydrodynamic model for semiconductors.
Comm Math Phys, 2005, 256(1): 195--212
[38] Li H -L, Lin C -K, Masmoudi N. Asymptotics of the compressible non-isentropic Euler-Poisson system
for small Debye length. preprint 2004
[39] Li H -L, Marcati P. Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model
for semiconductors. Comm Math Phys, 2004, 245(20: 215--247
[40] Li H -L, Markowich P. A review of hydrodynamical models for semiconductors: asymptotic behavior. Bol Soc Brasil Mat (N S), 2001, 32(3): 321--342
[41] Li H -L, Zhang G -J, Zhang M, Hao C -C. Long-time self-similar asymptotic of the macroscopic quantum models. J Math Phys, 2008, 49: 073503
[42] Li H -L, Zhang G -J, Zhang K -J. Algebraic time-decay rate for the bipolar quantum hydrodynamic
model. Math Models Methods Appl Sci, 2008, 18(6): 859--881
[43] Liang B, Zhang K -J. The steady-state solution and its asymptotic limits of bipolar quantum hydrodynamic equation for semiconductors. to appear in Math Models Methods Appl Sci,
[44] Loffredo M, Morato L. On the creation of quantized vortex lines in rotating He II. Il Nouvo Cimento, 1993, 108B: 205--215
[45] Madelung E. Quantentheorie in hydrodynamischer form. Z Physik, 1927, 40: 322
[46] Markowich P A, Ringhofer C, Schmeiser C. Semiconductor Equations. Wien: Springer, 1990
[47] Marcati P, Natalini R. Weak solution to a hydrodynamic model for semiconductors and relaxation to the
drift-diffusion equations. Archive Rat Mech Anal, 1995, 129: 129--145
[48] Peng Y -J. Some asymptotic analysis in steady-state Euler--Poisson equations for potential flow. Asymptotic Anal, 2003, 36: 75--92
[49] Peng Y -J, Wang Y -G. Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows. Nonlinearity, 2004, 17(3): 835--849
[50] Peng Y -J, Wang Y -G. Convergence of compressible Euler-Poisson equations to incompressible type Euler equations. Asymptot Anal, 2005, 41(2): 141--160
[51] Peng Y -J, Wang Y -G, Yong W -A. Quasi-neutral limit of the non-isentropic Euler-Poisson system. Proc Roy Soc Edinburgh Sect A, 2006, 136(5): 1013--1026
[52] Slemrod M, Sternberg N. Quasi-neutral limit for Euler-Poisson system. J Nonlinear Sci, 2001, 11: 193--209
[53] Unterreiter A. The thermal equilibrium solution of a generic bipolar quantum hydrodinamic model. Comm Math Phys, 1997, 188: 69--88
[54] Wang S. Quasineutral limit of Euler-Poisson system with and without viscosity. Comm Partial Differential
Equations, 2004, 29(3/4): 419--456
[55] Wigner E. On the quantum correction for thermodynamic equilibrium. Phys Rev, 1932, 40: 749--759
[56] Zhang B, Jerome J. On a steady state quantum hydrodynamic model for semiconductors. Nonlinear Anal TMA, 1996, 26: 845--856
[57] Zhang G -J, Li H -L, Zhang K -J. The semiclassical and relaxation limits of the bipolar quantum
hydrodynamic model for semiconductors in R3. J Differential Equations, 2008, 26: 845--856
[58] Zhang G -J, Zhang K -J. On the bipolar multidimensional quantum Euler-Poisson system: the thermal equilibrium solution and semiclassical limit. Nonlinear Anal TMA, 2007, 66: 2218--2229
|