[1] Isaza P, Mej´?a J. Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices. Comm Partial Differential Equations, 2001, 26(5/6): 1027–1054
[2] Bourgain J. On the Cauchy problem for the Kadomtsev-Petviashvili equation. Geom Funct Anal, 1993, 3(4): 315–341
[3] De Bouard A, Saut J C. Solitary waves of generalized Kadomtsev-Petviashvili equations. Ann Inst H Poincar´e Anal Non Lin´eaire, 1997, 14(2): 211–236
[4] Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case. Ann Inst H Poincar´e Anal Non Lin´eaire, 1984, 1(2, 4): 109–145; 223–283
[5] Willem M. Minimax Theorems. Progress in nonlinear differential equations and their applications. Boston: Birkhauser Boston, 1996
[6] Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providence: American Mathematical Soc, 1986
[7] Wang Z, Willem M. A multiplicity result for the generalized Kadomtsev-Petviashvili equation. Topol Methods Nonlinear Anal, 1996,7(2): 261–270
[8] Xuan B. Nontrivial solitary waves of GKP equation in multi-dimensional spaces. Rev Colombiana Mat, 2003, 37(1): 11–23
[9] Ding W, Ni W. On the existence of positive entire solutions of a semilinear elliptic equation. Arch Rational Mech Anal, 1986, 91(4): 283–308
[10] Besov O V, Il’in V P, Nikol’skiˇ? S M. Integral Representations of Functions and Imbedding Theorems. Vol I. Washington D C: V H Winston & Sons, 1978
[11] Br´ezis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88(3): 486–490 |