[1] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 349–381
[2] Alama S, Li Y Y. Existence of solutions for semilinear elliptic equations with indefinite linear part. J Differ Equ, 1992, 96: 89–115
[3] Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic problems on RN. Comm Partial Differ Equ, 1995, 20(9/10): 1725–1741
[4] Bartsch T, Ding Y H. On a nonlinear Schr¨odinger equation with periodic potential. Math Ann, 1999, 313: 15–37
[5] Bartsch T, Pankov A, Wang Z Q. Nonlinear Schr¨odinger equations with steep potential well. Commun Contemp Math, 2001, 3(4): 549–569
[6] Bartsch T, Wang Z Q. Multiple positive solutions for a nonlinear Schr¨odinger equation. Z Angew Math Phys, 2000, 51(3): 366–384
[7] Coti Zelati V, Rabinowitz P H. Homoclinic type solutions for a semilinear elliptic PDE on RN. Comm Pure Appl Math, 1992, 45(10): 1217–1269
[8] Costa D G. On a class of elliptic systems in RN. Elect J Differ Equ, 1994, 1994(7): 1–14
[9] Costa D G, Magalhaes C. A variational approach to noncooperative elliptic systems. Nonlinear Analysis, 1995, 25: 699–715
[10] Cerami G. Un criterio de esistenza per i punti critici su variet`a ilimitate. Rc Ist Lomb Sci Lett, 1978, 112: 332–336
[11] do ´O j , Medeiros E, Severo U. On the existence of signed and sign-changing solutions for a class of superlinear Schr¨odinger equations. J Math Anal Appl, 2008, 342(1): 432–445
[12] Ding Y H, Luan S X. Multiple solutions for a class of nonlinear Schr¨odinger equation. J Differ Equ, 2004, 207: 423–457
[13] Ding Y H, Lee C. Multiple solutions of Schr¨odinger equations with indefinite linear part and super or asymptotically linear terms. J Deffer Equ, 2006, 222: 137–163
[14] Ding Y H. Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems. Nonlinear Anal, 1995, 25: 1095–1113
[15] Jeanjean L. Solutions in spectral gaps for a nonlinear equation of Schr¨odinger type. J Differ Equ, 1994, 112: 53–80
[16] Jeanjean L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazertype problem set on RN. Proc Roy Soc Edinburgh Sect A, 1999, 129(4): 787–809
[17] Jeanjean L, Tanaka K. A positive solution for an asymptotically linear elliptic problem on RN autonomous at infinity. ESAIM Control Optim Calc Var, 2002, 7: 597–614
[18] Kryszewski W, Szulkin A. Generalized linking theorem with an application to semilinear Schr¨odinger equations. Adv Differ Equ, 1998, 3: 441–472
[19] Kato T. Perturbation Theory for Linear Operators. New York: Springer, 1996
[20] Omana W, Willem M. Homoclinic orbits for a class of Hamiltonian systems. Differ Integral Equ, 1992, 5: 1115–1120
[21] Rabinowitz P H. On a class of nonlinear Schr¨odinger equations. Z Angew Math Phys, 1992, 43(2): 270–291
[22] Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conf Series in Math, Vol 65. Providence, RI: American Mathematical Society, 1986
[23] Sirakov B. Existence and multiplicity of solutions of semi-linear elliptic equations in RN. Calc Var Partial Differ Equ, 2000, 11(2): 119–142
[24] Troestler C, Willem M. Nontrivial solution of a semilnear Schr¨odinger equation. Comm Partial Differ Equ, 1996, 21: 1431–1449
[25] Van Heerden F A. Homoclinic solutions for a semilinear slliptic equation with an asymptotically linear nonlinearity. Calc Var Partial Differ Equ, 2004, 20: 431–455
[26] Willem M, Zou W M. On a Schr¨odinger equation with periodic potential and spectrum point zero. Indiana Univ Math J, 2003, 52: 109–132
[27] Wang Z P, Zhou H S. Positive solutions for a nonhomogeneous elliptic equation on RN without (AR) condition. J Math Anal Appl, 2009, 353: 470–479
[28] Wang J, Tang C L. Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations. Bound Value Probl, 2006, Art ID 47275
[29] Wan L L, Tang C L. Homoclinic orbits for a class of the second order Hamiltonian systems. Acta Math Sci, 2010, 30B(1): 312-318 |