[1] Atkinson F V, Peletier L A. Similarity solutions of the nonlinear diffusion equation. Arch rational Mech Anal, 1974, 54: 373--392
[2] Courant R, Friedrichs K O. Supersonic Flows and Shock Waves. New York: Wiley-Interscience, 1948
[3] Duyn C T, Peletier L A. A class of similarity solution of the nonlinear diffusion equation. Nonlinear Analysis, T M A, 1977, 1: 223--233
[4] Goodman J. Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch Rational Mech Anal, 1986, 95(4): 325--344
[5] Hsiao L, Liu T P. Nonlinear diffsusive phenomenia of nonliear hyperbolic systems. Chin Ann Math, 1993, 14B(4): 465--480
[6] Huang F M, Matsumura A, Shi X. On the stability of contact discontinuity for compressible Navier-Stokes equations with free boundary. Osaka J Math, 2004, 41(1): 193--210
[7] Huang F M, Matsumura A, Xin Z P. Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations. Arch Ration Mech Anal, 2006, 179(1): 55--77
[8] Huang F M, Xin Zhouping, Yang Tong. Contact discontinuity with general perturbations for gas motions. Adv Math, 2008, 219(4): 1246--1297
[9] Huang F M, Yang T. Stability of contact discontinuity for the boltzmann equation. J Differ Equ, 2006, 229(2): 698--742
[10] Huang F M, Zhao H J. On the global stability of contact discontinuity for compressible Navier-Stokes equations. Rend Sem Mat Univ Padova, 2003, 109: 283--305
[11] Kawashima S, Matsumura A. Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Commun Math Phys, 1985, 101: 97--127
[12] Kawashima S, Matsumura A, Nishihara K. Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas. Proc Japan Acad, Ser A, 1986, 62: 249--252
[13] Kawashima S, Nikkuni Y. Stability of stationary solutions to the half-space problem for the discrete Boltzmann equation with multiple collision. Kyushu J Math, to appear. \REF{
[14]} Liu T P. Linear and nonlinear large time behavior of general systems of hyperbolic conservation laws. Comm Pure Appl Math, 1977, 30: 767--796
[15] Liu T P. Shock waves for compressible Navier-Stokes equations are stable. Comm Pure Appl Math, 1986, 39: 565--594
[16] Liu T, Xin Z P. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm Math Phys, 1988, 118: 451--465
[17] Liu T P, Xin Z P. Pointwise decay to contact discontinuities for systems of viscous conservation laws. Asian J Math, 1997, 1(1): 34--84
[18] Matsumura A, Mei M. Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary. Arch Rat Mech Anal, 1999, 146: 1--22
[19] Matsumura A, Nishihara K. On the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J Appl Math, 1985, 2: 17--25
[20] Matsumura A, Nishihara K. Asymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gas. Japan J Appl Math, 1986, 3: 1--13
[21] Matsumura A, Nishihara K. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Commun Math Phys, 1992, 144: 325--335
[22] Matsumura A, Nishihara K. Global asymptotics toward the rarefaction wave for solutions of viscous p-system with boundary effect. Q Appl Math, 2000, LVIII: 69--83
[23] Pan T, Liu H X, Nishihara K. Asymptotic behavior of a one-dimensional compressible viscous gas with free boundary. SIAM J Math Anal, 2002, 34(2): 273--291
[24] Smoller J.Shock Waves and Reaction-Diffusion Equations. Berlin, Heidelberg, New York: Springer, 1982
[25] Szepessy A, Xin Z P. Nonlinear stability of viscous shock waves. Arch Rat Mech Anal, 1993, 122: 53--103
[26] Szepessy A, Zumbrun K. Stability of rarefaction waves in viscous media. Arch Rational Mech Anal, 1996, 133(3): 249--298
[27] Xin Z P.On nonlinear stability of contact discontinuities//Glilnm J, et al, ed. Proceeding of 5th International Conferences on Hyperbolic Problems: Theory, Numerics and Applications. Singapore World Scientific, 1996: 249--257
|