[1] Allard W K. On the first variation of a varifold. Ann Math, 1972, 95: 225--254
[2] Chen S H, Tan Z. The method of a-harmonic approximation and optimal interior partial regularity for nonlinear elliptic systems under the controllable growth condition. J Math Anal Appl, 2007, 335(1): 20--42
[3] Chen S H, Tan Z. Optimal interior partial regularity for nonlinear elliptic systems under the natural growth condition: the method of A-harmonic approximation. Acta Math Sci, 2007, 27B(3): 491--508
[4] Chen S H, Tan Z. Partial regularity for weak solutions of stationary Navier-Stokes systems. Acta Math Sci, 2008, 28B(4): 877--894
[5] Campanato S. Equazioni ellitichi del IIe ordine e spazi L2, λ. Ann Mat Pura Appl, 1965, 69: 321--381
[6] Campanato S. Proprieà di une famiglia di spazi funzionali. Ann Sc Norm Super Pisa, 1964, 18: 137--160
[7] Dini D. Sur la méthode des approximations successive pour les équations aux dériées partielles du deuxiéme order. Acta Math, 1902, 25: 185--230
[8] Duzaar F, Gastel A. Nonlinear elliptic systems with Dini continous coefficients. J Arch Math, 2002, 78: 58--73
[9] Duzaar F, Grotowski J. Optimal interior partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation. Manuscripta Math, 2000, 103: 267--298
[10] Duzaar F, Steffen K. Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals. Reine Angew Math, 2002, 546: 73--138
[11] Giaquinta M. Multiple integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton: Princeton University Press, 1983
[12] Hartman P, Wintner A. On uniform Dini conditions in the theory of linear partial differential equations of elliptic type. Amer J Math, 1955, 77: 329--354
[13] Simon L. Lectures on Geometric Measure Theory. Canberra: Australian National University Press, 1983
[14] Yuan Q B, Tan Z. Optimal interior partial regularity for nonlinear elliptic systems under The natural growth condition with Dini continuous coefficients. Math Study, 2007, 40: 222--247
|