[1] Du Q. Quantized Vortices in Superfluids -a mathematical and computational study. Master Review -(for Lecture Note Series, IMS, NUS, Singapore), 2005, 9
[2] Bethuel F, Brezis H, Helein F. Ginzburg-Landau vortices. Boston: Birkhauser, 1994
[3] Beaulieu A, Hadiji R. On a class of Ginzburg-Landau equations with weight. Panamer Math J, 1995, 5: 1--33
[4] Ding S J, Liu Z H, Yu W H. Pinning of vortices for the Ginzburg-Landau functional with variable coefficient. Appl Math J Chinese Univ Ser B, 1997, 12: 77--88
[5] Ding S J, Liu Z H. Asmptotic behavior for minimizers of an anisotropic Ginzburg-Landau functional. Differential and Integral Equations, 2000, 13: 227--254
[6] Kou Y L, Ding S J. Critical magnetic field and asymptotic behavior of an anisotropic superconducting thin film. preprint
[7] Zhang Y Z, Bao W Z, Du Q. The dynamics and interaction of quantized vortices in Ginzburg-Landau-schr\"{o}dinger equation. SIAM J Appl Math, 2007, 67: 1740--1775
[8] Lin F H. Some dynamical properties of Ginzburg-Landau vortices. Comm Pure Appl Math, 1996, 49: 323--359
[9] Lin F H. Complex Ginzburg-Landau equations and dynamics of vortices, filaments and codimension 2 submanifold. Comm Pure Appl Math, 1998, 51: 385--441
[10] Jian H Y. The dynamical law of Ginzburg-Landau vortices with a pinning effect. Appl Math Lett, 2000, 13: 91--94
[11] Jian H Y, Song B H. Vortex dynamics of Ginzburg-Landau equations in inhomogeneous superconductors. J Diff Eqns, 2001, 170: 123--141
[12] Ding S J. Motion of inhomogeneous Ginzburg-Landau vortex and curvature flow (I): 2-D problem. Journal of South China Normal
University, 2001, 2: 1--11
[13] Ding S J. Motion of inhomogeneous Ginzburg-Landau vortex and curvature flow (II): 3-D problem. Journal of South China Normal
University, 2001, 3: 1--13
[14] Jian H Y, Xu X W. The vortex dynamics of a Ginzburg-Landau system under pinning effect. Science in China (series A), 2003, 46: 488--498 |